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The Cathaysia block records a complex tectonic history, the understanding ofwhich is central to the debate on the
evolution of the South China Block and its position in various supercontinent assemblies. Herewe investigate two
key formations from this block, the Mayuan Group in the northern Fujian Province, northeastern Cathaysia block
and its equivalent the Badu Group in southwestern Zhejiang Province. Previous studies traced the
Paleoproterozoic records from the Badu Group whereas a Neoproterozoic age was proposed for the Mayuan
Group. The rocks sampled in this study fromboth groups show similarmineral assemblages of garnet+ silliman-
ite + biotite + plagioclase + quartz ± K-feldspar± muscovite ± graphite as well as high contents of SiO2 and
Al2O3, typical of amphibolite- to granulite-faciesmetapelitic rocks. Zircon U–Pb data yield two discordia intercept
ages of ~1990 Ma and ~2450 Ma from one sample and discordia intercept ages of ~3.5 Ga, 2.5 Ga, 1.86 Ga and
233 Ma from another in the Badu Group. Zircons in two samples from the Mayuan group yield intercept ages
of 1859 Ma and 249 Ma in one sample and ~2.6 Ga, 1.87 Ga, 257 Ma and a weighted mean 206Pb/238U age of
248 Ma in the other. The ca. 1.86–1.87 Ga and 230–250 Ma ages are interpreted to represent the time of meta-
morphic reworking because zircon grains of these ages tend to have low Th/U ratios, flat HREE patterns and
unzoned internal texture as revealed by cathodoluminescene (CL) images. These results confirm that the Badu
Group is a Paleoproterozoic lithostratigraphic unit and also suggest that at least part, if not all, of the Mayuan
Group is Paleoproterozoic.
Evidence for Paleozoicmetamorphic reworking that is considered to have affected thewhole of Cathaysia block is
not revealed in this study; in contrast our data clearly show obvious Mesozoic metamorphic reworking at ca.
230–250 Ma. Zircon ɛHf(t) values range from −19 to +11 with a peak at −5.5 and show TDMC (Hf) ranging
from 1.9 to 4.1 Ga with a peak at ca. 2.7–3.0 Ga suggesting that a major crustal growth took place during this
time. This interpretation is consistent with the previously suggested crustal growth peaks of ~2.7 Ga and
~2.9Ga. A synthesis of the reliable geochronological data gathered so far on Phanerozoicmetamorphic reworking
of the northeastern Cathaysia block reveals that the imprints of these tectonothermal events is differently distrib-
uted in the different zones. Rocks metamorphosed during the Paleozoic tectonothermal event dominantly occur
in thewestern zonewhereas those reworked by high-grademetamorphism during theMesozoic tectonothermal
event mainly outcrop in the eastern zone. Our study alerts the previous notion of a uniform distribution of the
reworked rocks by high-grade metamorphism all across the northeastern Cathaysia block and provides new in-
sights on the evolution of the South China Block.

© 2014 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The Cathaysia block is one of the two constituent blocks of the South
China Block (SCB, also called the South China Craton by some geolo-
gists), the other one being the Yangtze block (Fig. 1A). It is generally ac-
cepted that the two blocks amalgamated during early Neoproterozoic to
form the SCB (Shu and Charvet, 1996; Zhao and Cawood, 1999; Li et al.,
V. All rights reserved.
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Fig. 1. Simplified geologicalmap of South China (A) and basement areas of thenortheastern Cathaysia block (B). (A)Distribution of Precambrian rockunits in South China. (B) Precambrian
lithostratigraphic units of the northeastern Cathaysia block showing sample locations of present study. The map is modified after Hu et al. (1991); Fujian, BGMR (Bureau of Geology and
Mineral Resources of Fujian Province) (1985); Wan et al. (2007); Yu et al. (2010).
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2002; Li and Li, 2007; Zhao and Cawood, 2012; Cawood et al., 2013; Li
et al., 2013; Zhai, 2013; Zheng et al., 2013). Basement rocks of the Yang-
tze block are exposed in theKongling terrane (Gao et al., 1999; Qiu et al.,
2000; Zhang et al., 2006 and references therein) and in the Huji region
(Z.Wang et al., 2013). However, the issue of spatial and temporal distri-
bution of the basement rocks in the Cathaysia block has remained
controversial.

Huang (1960) referred to the Cathaysia block as a Caledonian Fold
belt which suggested that the Archaean to Proterozoic basement rocks
proposed by Grabau (1924) might not exist. However, in the 1990s, Hu
et al. (1991), Fu et al. (1991), Gan et al. (1993, 1995) and several others
reported Archaean to Paleoproterozoic ages from rocks outcropping in
the Fujian and Zhejiang Provinces, northeastern Cathaysia block, using
conventional single- or multi-grain TIMS or Sm–Nd and Rb–Sr isotopic
methods. These studies established occurrence of the Neoarchean
Tianjingping Formation, Paleoproterozoic Badu and Mayuan Groups,
Dikou and Taoxi Formations, Mesoproterozoic Mamianshan, Longquan
and Wanquan Groups, and Jiaoxi Formations (Fig. 1B). The results
showed that the Cathaysia block possesses Archaean to Paleoproterozoic
basement. However, the models from these new findings lasted only for
less than a decadewhen Li (1997), Yu et al. (2005),Wan et al. (2007) and
Xu et al. (2010) published in-situ zirconU–Pb results and argued that the
rocks in many of the groups and formations mentioned above are youn-
ger than the timings assigned to them previously. Thus, the Tianjingping
Formation might be Paleoproterozoic (younger than 1766 Ma, Li, 1997;
Wan et al., 2007), and the Mayuan, Wanquan and Mamianshan Groups,
the Dikou, Tiaoxi and Jiaoxi Formations might all be Neoproterozoic.
However, the Badu Group, which is the equivalent lithostratigraphic
unit of the Mayuan Group in Zhejiang Province, has been considered to
be Paleoproterozoic (Yu et al., 2009; J.-H. Yu et al., 2012; Zhao et al.,
2014). The rock assemblages of the two groups extend continuously
across the two provinces without any fault or stratigraphic unconformi-
ty, although distinct ages were proposed for them.

The metasedimentary rocks of the Badu Group are believed to have
experienced an episode of granulite-facies metamorphism during late
Paleoproterozoic (1.85–1.89 Ga; J.-H. Yu et al., 2012; Zhao et al., 2014).
J.-H. Yu et al. (2012) concluded that this episode of metamorphic
reworking caused extensive zircon overgrowth and the formation of
the kyanite + K-feldspar + biotite + garnet + quartz assemblage.
Zhao and Zhou (2012) studied themetamorphic evolution of the pelitic
granulites of the Badu Group and they gave the peak P and T conditions
of 0.6–0.7GPa and ~850 °C. Also, themetamorphic P–T path of the gran-
ulites is clockwise. Charnockites formed synchronously with the
Paleoproterozoic metamorphism have also been found in the Badu
Group whose formation temperatures are believed to be N850 °C
(Zhao et al., 2014). Zhao and Cawood (1999) studied the metamorphic
rocks sampled from the Mayuan Group and they gave peak metamor-
phic P and T conditions of ~1.2 GPa and ~650 °C and these samples
also recorded a clockwise P–T path.

Phanerozoic reworking related to amphibolite- to granulite-facies
metamorphism has also been identified as an important feature of the
Cathaysia block (Lin et al., 2008; Faure et al., 2009; Li et al., 2010; Zhao
and Cawood, 2012; Y. Wang et al., 2013a and references therein), like
the Paleozoic granulite-facies metamorphism and synchronous
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Charnockites in the Yunkai and Nanling area, southwestern Cathaysia
block (Yu et al., 2005; J.H. Yu et al., 2007; Wan et al., 2010; D. Wang
et al., 2013a and references therein), the Mesozoic amphibolite- to
granulite-facies metamorphism in the Badu Group (J.-H. Yu et al.,
2012; Y. Wang et al., 2012). Li et al. (2010), based on a synthesis of
their own and someof the previous results on geochronology andmeta-
morphic evolution, developed the model of Caledonian fold belt pro-
posed by Huang (1960) and argued that most of the Cathaysia block
belongs to a Paleozoic orogen, the Wuyi-Yunkai orogenic belt, which
is similar to the classic Caledonian orogen in Europe. However, new ev-
idence is accumulating which show that a significant part of the so-
called Wuyi-Yunkai orogenic belt might not belong to the Paleozoic
reworked zone. Rather, it shows more obvious characteristics of Meso-
zoic metamorphic reworking and the rocks exposed in this area show
very few evidence for Paleozoic metamorphic reworking (Shu et al.,
2008; Y. Wang et al., 2012; Zhao and Cawood, 2012; Mao et al., 2013;
Y. Wang et al., 2013a and references therein). Thus, more work is need-
ed to resolve the spatial distribution of the basement rocks, particularly
those in the Badu andMayuan Groups, and also to demarcate the zones
reworked by the two episodes of Phanerozoic metamorphism of the
Cathaysia block. These issues have important implications on the evolu-
tion and configuration of the Eurasian continent and the geodynamics
processes of the region.

In this paper, we present petrographic observations, whole rock geo-
chemistry and zircon U–Th–Pb–Hf and trace element analyses of
metasedimentary rocks from both the Badu and Mayuan Groups. The
results show that at least part, if not all, of the Mayuan Group is
Paleoproterozoic, with records of Paleoproterozoic and Mesozoic meta-
morphic reworking similar to the rocks in the Badu Group.

2. Geological background

The study area lies in the northeastern Cathaysia block, and is a
northeast–southwest trending region bounded by the Jiao-Shao fault
in the northwest with the Neoproterozoic Jiangnan Orogen and by the
Zhenghe-Dapu fault in the southeast with the coastal areas of the
Cathaysia block. The Jiangnan Orogen, which is mainly composed of
Neoproterozoic ophiolites, granitoids, volcanic and sedimentary rocks,
is believed to be the suture zone alongwhich the Yangtze and Cathaysia
blocks amalgamated to form the SCB (Gao et al., 2009; Li et al., 2009; Q.
Wang et al., 2010;W.Wang et al., 2012; X.-L.Wang et al., 2012; A. Zhang
et al., 2012; S.-B. Zhang et al., 2012; Y. Zhang et al., 2012; Cawood et al.,
2013; Li et al., 2013; W. Wang et al., 2013; D. Wang et al., 2013b; Yao
et al., 2013; Yin et al., 2013; C.L. Zhang et al., 2013; Y. Zhang et al.,
2013;). The coastal areas of the Cathaysia block are dominated by
Yanshanian (140–100 Ma) magmatic rocks (Xu et al., 2007).

The Badu Group is located in the southwestern Zhejiang Province
and was first established by Hu et al. (1991). The metamorphosed
lithostratigraphic units occur as tectonic windows in the Phanerozoic
cover (Fig. 1) (Xu et al., 2007; Yu et al., 2009; Yu et al., 2010; J.-H. Yu
et al., 2012; Zhao et al., 2014). The Mayuan Group which is located in
the northern Fujian Province was first established by Fujian, BGMR (Bu-
reau of Geology and Mineral Resources of Fujian Province) (1985).
Apart from the Mayuan Group, some Meso- to Neoproterozoic rock
units were also established, like the Jiaoxi Formation, Wanquan and
Mamianshan Groups (Fig. 1) (Fujian, BGMR (Bureau of Geology and
Mineral Resources of Fujian Province), 1985; Li et al., 1997).

Hu et al. (1991) and Fujian, BGMR (Bureau of Geology and Mineral
Resources of Fujian Province) (1985) gave similar descriptions for the
rock assemblages of the Badu and Mayuan Groups. The Badu Group is
dominantly composed of a series of metamorphosed terrestrial clastics.
The rock types include biotite–plagioclase gneiss, amphibolites, amphi-
bole–plagioclase gneiss, biotite–plagioclase–quartz gneiss, mica schist,
and mica–quartz schist. Graphite, garnet, sillimanite, and sometimes
kyanite are pervasive metamorphic minerals in the metasedimentary
units mentioned above (Hu et al., 1991). The Mayuan Group is
composed of a series of proximal terrestrial clastics that experienced
low- to medium-grade metamorphism and can be divided into three
formations. From bottom up, these are the Huixiangdian Formation,
Dajinshan Formation and Nanshan Formation (Li et al., 1997). The
Huixiangdian Formation (location of stratigraphic type locality:
118°27′, 28°10′) consists of migmatized biotite gneiss, biotite–plagio-
clase gneiss that is conformably overlain by the Dajinshan Formation
(location of stratigraphic type locality: 117°47′, 27°17′) composed of bi-
otite gneiss, biotite–plagioclase gneiss, and two-mica gneiss. The
Dajinshan Formation is conformably overlain by the Nanshan Forma-
tion (location of stratigraphic typelocality: 118°04′, 27°22′) whose
rock assemblage is mainly mica schist and minor gneiss. Rock assem-
blages of theMayuan Group are typically composed of a series of meta-
morphosed terrestrial clastics like those of the Badu Group. Also,
metamorphic minerals like garnet, sillimanite and kyanite are often
found in these rocks. Graphite is reported to occur only in the Dajinshan
Formation (Li et al., 1997). Granitoids, that are believed to have intruded
into the Badu andMayuanGroups and possessing Paleoproterozoic em-
placement ages (~1.85–1.93Ga), have been found mainly in Zhejiang
Province (Hu et al., 1991; Gan et al., 1993, 1995; Yu et al., 2009; Xia
et al., 2012; Zhao et al., 2014). Li et al. (2011a) also reported a
Paleoproterozoic granitoid in Fujian Province (Fig. 1). Amphibolites
and some meta-volcanic rocks have also been found both in the Badu
Group and in the Mayuan Group with ages ranging from 1.77 Ga to
~0.8 Ga (Li, 1997; Chen et al., 2008; J.-H. Yu et al., 2012; Y. Wang
et al., 2012 and references therein). Some of these rocks might be intru-
sions (like the 1.77 Ga amphibolite, Li, 1997), while some others might
be allochthonous rocks folded together with the autochthonous rocks
during Phanerozoic deformation. Chen et al. (2008) and Xia et al.
(2014) reported some Paleozoic granitoids in the area where the base-
ment rocks of the Cathaysia block outcrop. Apart from these granitoids,
the Paleozoic tectonothermal event did not apparently affect the
Paleoproterozoic basement rocks of the Cathaysia block (Chen et al.,
2008).

3. Samples

Samples of the metasedimentary units were collected from both the
Badu and Mayuan Groups in Zhejiang and Fujian Provinces (Fig. 1).
They show similar mineral assemblage of garnet (Grt) + sillimanite
(Sil) + biotite (Bt) + plagioclase (Pl) + quartz ± K-feldspar (Kf) ±
muscovite (Mus) ± graphite (Gra). Some of the biotite grains have
been altered to form chlorite (Chl) (Fig. 3D). There is minor variation
in the modal content of minerals among the samples. For example, the
contents of Bt and Pl inWY03 are higher than those in the other samples
and the contents of Grt in WY15 and WY26 are lower.

WY03 (119°11.983′, 28°33.559′) is a Grt-Sil-Bt gneiss (Figs. 2A and
3A, B) belonging to the Badu Group, and was sampled from the
Suichang region, Zhejiang Province. WY15 (119°16.384′, 28°21.851′)
is Grt-bearing Sil-Bt gneiss (Figs. 2B and 3C, D) of the Badu Group, and
was sampled from the Gaoting region, Zhejiang Province. WY26
(118°35.951′, 27°36.878′) is a Grt and Sil-bearing Bt gneiss (Figs. 2C
and 3E, F) of theDajinshan Formation,MayuanGroup, andwas sampled
from the Songxi region, Fujian Province.WY35 (118°27.365′, 27°0.184′)
is Grt-bearing Sil-Bt gneiss (Figs. 2D and 3G, H) of the Dajinshan Forma-
tion, Mayuan Group, and was sampled from the Jian'ou region, Fujian
Province.

All the rocks experienced strong deformation and the primary sedi-
mentary layers (S0) have completely been replaced by well-defined lin-
eation and foliation (S1 and S2) (Fig. 2). Quartz grains that show
undulating extinction are commonly present in all these samples. For
example, in sample WY35, the quartz grains were elongated and foliat-
ed during mylonitization to form S1. Subsequently, ductile shear defor-
mation twisted the elongated grains and fine-grained biotite grains
filled in the between quartz grains to form S2 (Fig. 3G). Evidence for
the ductile shear deformation is shown in Fig. 3H. Pressure shadow



Fig. 2. Outcrop photographs of samples WY03 (A), WY15 (B), WY26 (C) and WY35 (D).
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composed of biotite grains and sometimes fine-grained sillimanite is
another evidence for the strong deformation (Fig. 3A). The two episodes
of strong deformation might be related to two distinct tectonothermal
events.

4. Analytical techniques

Major and trace element analyses of the studied samples were car-
ried out at the State Key Laboratory of Lithospheric Evolution of the In-
stitute of Geology and Geophysics, Chinese Academy of Sciences
(IGGCAS). Major elements analyses were performed using X-ray fluo-
rescence (Shimadzu XRF-1700/1500) after fusion with lithium
tetraborate. The loss-on-ignition was measured as the weight loss of
the samples after 1 h baking under a constant temperature at 1000 °C.
The analyses were corrected using Chinese national standard sample
GBW07101-07114. The precision was better than 0.2 wt.%. Trace ele-
ment analyses were performed using an ELEMENT ICP-MS after HNO3

+HFdigestion of about 40mg sample powder in a Teflon vessel. The ac-
curacy and reproducibility during analyses were monitored using Chi-
nese national standard samples GSR1 (granite), GSR2 (rhyolite) and
GSR3 (basalt). The relative standard deviation was better than 5%
above the detection limits.

Zircons grainswere separated using standard heavy-liquid andmag-
netic techniques, and then handpicked under a binocular microscope in
theMineral Separation Laboratory of the Institute of Regional Geological
Survey in Langfang, Hebei Province, China. The grains were then em-
bedded in 25 mm epoxy discs, and then were ground and polished to
expose the grain cores for CL imaging, U–Pb dating and Lu–Hf isotope
analyses. The internal zoning was examined using a CL spectrometer
(Garton Mono CL3+) equipped on a Quanta 200 F ESEM with 2-min
scanning time at conditions of 15 kV and 120 nA at Peking University.

In-situ zircon U–Pb dating and trace element analyses were per-
formed in the Geological Lab Center, China University of Geosciences
(Beijing), using a laser ablation-split-stream inductively coupled
plasma-mass spectrometry (LA-SS-ICP-MS) technique which enables
zircon U–Pb dating and zircon trace element analyses at the same
time. The instrument couples a quadrupole ICP-MS (Agilient 7500a)
and an UP-193 Solid-State laser (193 nm, New Wave Research Inc.)
with the automatic positioning system. The laser spot size we used
was 40 μm for all analyses. The counting time for U, Th, 204Pb, 206Pb,
207Pb and 208Pb is 20ms, 6ms for Si and Zr and 15ms for other elements.
Calibrations for the zircon analyseswere carried out usingNIST610 glass
as an external standard and Si as internal standard. U–Pb isotope frac-
tionation effects were corrected using zircon 91500 (Wiedenbeck
et al., 1995) as an external standard. Zircon standard TEMORA
(417 Ma) from Australia (Black et al., 2003) is also used as a secondary
standard to monitor the deviation of age measurements/calculations.
The apparent 208Pb/238U ages for standard TEMORA we got scattered
from 416 to 418 Ma, consistent with the recommended value of
417 Ma. NIST612 and NIST614 were also used to monitor the stability
of the instrument during the analyses of trace element. The common
lead was corrected following the method of (Andersen, 2002). Detailed
Laboratory and instrument description and analytical procedures are
presented in (Song et al., 2010). The analytical results were processed
using the SQUID and ISOPLOT programs (Ludwig, 2003).

In situ zircon Hf isotope analyses were carried out using a Neptune
MC-ICPMS in the State Key Laboratory of Lithospheric Evolution of the
IGGCAS. A 40–63 μm spot size was applied during ablation with a
193 nm laser, using a repetition rate of 10Hz inmost cases. Detailed Lab-
oratory and instrument description and analytical procedures are pre-
sented in (Wu et al., 2006). The domain of zircon grains chosen for Hf
isotopic analyses is the same where the U–Pb dating was done. During
analyses, GJ and Mud (two kinds of zircon standards, whose U–Pb ages
and Hf isotope compositions are known and stable, and also they are
quite uniform in isotope compositions) were used tomonitor the stabil-
ity of themachine. Theweighted 176Hf/177Hf (c) value of GJ yielded from
the analyses is 0.2820031 ± 0.0000048, and the weighted 176Hf/177Hf
(c) ofMud yielded from theanalyses is 0.282502± 0.000003, consistent
with the value recommended elsewhere (Woodhead and Hergt, 2005;
Zeh et al., 2007; Xie et al., 2008), after taking the analytical errors into
consideration. Based on depleted mantle and chondrite sources, model
ages (TDM(Hf)) and ɛHf(t) of zircon grains were calculated. The value of
176Hf/177Hf and 176Lu/177Hf of the depleted mantle are 0.28325 and
0.0384 (Griffin et al., 2002). Those values of chondrite are 0.282772
and 0.0332 (Blichert Toft and Albarede, 1997). The decay constant of
176Lu adopted in this paper is 1.867 × 10−11per year (Söderlund et al.,



Fig. 3. Photomicrographs of samples WY03 (A and B), WY15 (C and D), WY26 (E and F) and WY35 (G and H). F and G in crossed nicols; all others in open nicols.
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2004). Because TDM(Hf) ages (calculated using themeasured 176Lu/177Hf
of the zircon grains) can only give a minimum age for the source mate-
rials of the host magma, two-stage “crustal”model ages (TDMC (Hf)) were
calculated assuming that the parent magma of each zircon was derived
from a source with 176Lu/177Hf of 0.015, corresponding to the average
continental crust (Griffin et al., 2002).

5. Results

5.1. Whole rock major and trace element compositions

Whole rock major and trace element compositions are presented in
Table 1 and Fig. 4. SiO2 contents of almost all samples scatter in a narrow
range of 71.6 to 75.9%, except sample WY26-1 which has a lower SiO2

content of 64.7% and high loss-on-ignition (LOI) of 4.8%. In thin section
and hand specimen of this sample, we found a thin-layer of carbonate
vein which might explain the above features, together with the high
CaO contents of this rock. The Al2O3 contents of the analyzed samples
are high, ranging from 10.7 to 14.8% with A/CNK values ranging from
1.0 to 3.0 (Table 1).

The rocks show similar trend of chondrite-normalized REE
patterns and depleted mantle normalized trace element patterns
(Fig. 4). Their ΣREE values range from 45–378 ppm, with some
rocks showing positive Eu anomaly (sample WY26) whereas
others displaying negative Eu anomalies (sample WY35)
(Table 1).



Table 1
Major and trace element compositions of the studied samples.

sample no. WY03-1 WY03-3 WY15-1 WY26-2 WY26-1 WY35-2 WY35-1

SiO2 73.6 73.4 74.8 71.6 64.7 75.9 74.5
Al2O3 13.9 10.7 11.6 14.4 14.8 12.7 14.0
Fe2O3 0.3 1.5 0.2 0.2 0.1 1.0 0.2
FeO 2.6 5.7 3.2 1.2 1.8 0.6 0.6
CaO 1.3 0.5 0.6 1.4 4.1 0.3 0.4
MgO 1.2 2.7 1.4 0.5 1.4 0.5 0.2
K2O 2.9 1.7 3.1 4.3 4.9 5.5 5.8
Na2O 1.9 0.5 2.1 3.6 1.7 1.5 3.0
TiO2 0.3 0.5 0.5 0.1 0.3 0.2 0.1
MnO 0.1 0.1 0.0 0.0 0.1 0.0 0.0
P2O5 0.0 0.1 0.1 0.1 0.3 0.1 0.1
LOI 1.2 1.7 1.6 1.8 4.8 1.3 0.7
Sum 99.3 99.0 99.22 99.31 98.94 99.6 99.67
A/CNK 1.6 3.0 1.5 1.1 1.0 1.4 1.2
La 16 36 54 18 25 78 10
Ce 29 71 110 36 54 169 19
Pr 3 8 12 4 6 20 2
Nd 12 28 43 13 25 73 8
Sm 2 5 8 2 5 15 2
Eu 1 1 1 1 2 1 0
Gd 2 5 5 2 5 11 2
Tb 0 1 1 0 1 2 0
Dy 3 6 3 2 4 6 1
Ho 1 1 1 0 1 1 0
Er 2 4 2 1 2 2 0
Tm 0 0 0 0 0 0 0
Yb 2 3 1 1 2 1 0
Lu 0 1 0 0 0 0 0
ΣREE 73 170 240 80 132 378 45
Y 19 37 15 11 22 21 6
Sc 8 18 7 6 4 6 3
Cr 42 70 59 7 13 3 5
Co 7 20 9 2 9 2 1
Ga 20 16 20 18 19 24 18
Rb 122 88 111 203 231 229 198
Sr 148 53 158 222 145 103 183
Zr 147 232 199 107 43 176 71
Nb 4 8 13 3 2 10 3
Ba 633 420 646 743 2289 584 881
Hf 4 7 6 3 2 6 3
Ta 0 0 1 0 0 0 0
Pb 29 8 24 27 33 52 48
Th 3 11 24 6 2 49 4
U 0 1 3 1 0 8 2
δEu 1.6 0.4 0.5 1.3 1.1 0.3 0.9
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5.2. Zircon U–Pb geochronology and trace elements

5.2.1. Grt-Sil-Bt gneiss (WY03) of the Badu Group
Zircons from sample WY03 have distinct grain sizes and shapes and

are mostly subhedral to anhedral. Some of the grains are small and
round with grain sizes of 60–70 × 60–70 μm or even smaller. These
grains are typically detrital zircons which were abraded during long-
distance transportation. Some grains are larger in size and are long
Fig. 4. Chondrite-normalized REE patterns and Primitivemantle-normalizedmultiple trace elem
McDonough (1989).
prismatic in shape, with grain sizes of 30–70 × 100–200 μm. However,
these grains also show obvious characteristics of abrasion caused by
mechanical transportation. For example, both ends of prisms are round-
ed suggesting relatively short distance transportation of the grains. All
the other zircons possess sizes and shapes in between the above
two groups. Most zircon grains show core-rim structures in
cathodoluminescene (CL) images, with the cores showing different
shapes and sizes. Some of the cores are long prismatic and are oscillato-
ry zoned whereas others are round and also show oscillatory zones
(Fig. 5). The rims of zircon grains are mostly narrow and could not be
analyzed using the large laser beam size for U–Pb analyses. Themorpho-
logical characteristics of zircons show that they are typical detrital zir-
cons which experienced metamorphic overprinting.

Zircon U–Pb analyses were mostly performed on zircon cores and
some spots might have also extracted materials from zircon rims be-
cause of their small grain size. Zircon U–Pb and trace element results
of WY03 are presented in Figs. 6 and 7 and Appendix Table. Most of
the analyzed spots yield discordant results (Concordance b90%),
resulting from Pb-loss, and they mainly plot along two poorly defined
discordia with two upper intercept ages of 1990 ± 31 Ma and 2451
± 63 Ma, respectively (Fig. 6). The several concordant results have
207Pb/206Pb ages ranging from 1914 to 2639 Ma. The discordant results
have 207Pb/206Pb ages ranging from 1499 to 2770 Ma. Trace element
data on the zircons show obvious LREE depleted and HREE enriched na-
ture (Fig. 7). Th/U ratios are mostly N0.1 with a few grains b0.1. The
grains that possess Th/U ratios below 0.1 tend to have young 207Pb/
206Pb ages and show significant Pb loss suggestingmetamorphic origin.

Normally, 207Pb/206Pb age of zircon which crystallized more than
1000 Ma ago is believed to be the closest to the real age and if zircons
experienced recent Pb loss, the 207Pb/206Pb ages could still be
interpreted to represent the real crystallization ages of zircons. Howev-
er, if Pb loss occurred during an ancient tectonothermal event, then the
upper intercept ages of the discordia defined by the results rather than
207Pb/206Pb ages should be considered to be the formation ages of the
rocks studied. The two upper intercept ages of 1990 ± 31 Ma and
2451 ± 63 Ma might reflect the emplacement ages of two of sedimen-
tary precursors of the Badu Group. Xia et al. (2012), Yu et al. (2009),
J.-H. Yu et al. (2012) and Zhao et al. (2014) have reported similar ages
of ~1.9 Ga and ~2.5 Ga. Evidence for extensive Mesozoic metamorphic
overprinting recorded by the rocks from the Badu Group as reported
in previous studies was not clearly found in this sample.

5.2.2. Grt-bearing Sil-Bt gneiss (WY15) of the Badu Group
Some of the zircon grains of WY15 are euhedral to subhedral, long

prismatic with sizes and aspect ratios range from 50–120 × 100–
300 μm and from 1:2 to 1:3, respectively. Some grains are ellipsoidal
or even round, and anhedral in shape, features typical of detrital zircons.
In CL images, they show obvious core-rim structures (Fig. 5). The rims
are unzoned as well as some of the cores. Many cores show weakly os-
cillatory zones indicating their magmatic origin and metamorphic
alteration.
ent diagrams of the samples. REE and Primitivemantle normalization factors after Sun and



Fig. 5. CL images of zircons from different samples showing analytical spots.
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A total number of 73 grains were analyzed on both rims and cores
and zircon U–Pb and trace element analyses results are presented in
Figs. 7, 8, and Appendix Supplementary Table. Cores and rims of the zir-
cons show distinct Th/U ratios and Chondrite-normalized REE patterns
(Fig. 7). Rims, irrespective of U–Pb ages, have Th/U ratios b0.1 and
show flat HREE patterns whereas the cores tend to have Th/U ratios
mostly N0.1 and show enriched HREE. The cores are evidently of mag-
matic origin and the rims are metamorphic (Schaltegger et al., 1999;
Rubatto, 2002; Hoskin and Schaltegger, 2003; Kelly et al., 2006; Harley
and Kelly, 2007). Although some of the cores also have Th/U rations
b0.1, their REE patterns show enriched HREE so that they might still
be magmatic.

Ages from the rims show two distinct clusters at ~ 230 Ma and
~1850 Ma and they form a well-defined discordia with an upper inter-
cept age of 1894 ± 15Ma and a lower intercept age of 233 ± 4Ma. Re-
sults from cores show 207Pb/206Pb ages in the range of 1789–3403 Ma.
Some of the results from zircon cores also form a discordia with upper
intercept age of 3530 ± 80 Ma and lower intercept age of 1858 ±
39 Ma. Another discordia with upper intercept age of about 2500 Ma
and lower intercept age of about 230Ma is also well defined by the zir-
con cores and rims. After taking the analytical errors into consideration,
the lower intercept age of the discordia defined by the cores is consis-
tent with the upper intercept age of the discordia defined by the rims.
Fig. 6. Zircon U–Pb concordia diagrams for
The ages of ~230 Ma, 1850–1890 Ma and 2500 Ma are consistent with
previously published ages of the Badu Group and the former two ages
are interpreted to represent two tectonothermal events whereas the
latter age of ~2500 Ma is considered to represent the age of the prove-
nance of these metasedimentary rocks as has also been proposed by
Xia et al. (2012), Yu et al. (2009) and J.-H. Yu et al. (2012) and Zhao
et al. (2014). The age of ~3530 Ma might indicate another older source
of these rocks. The zircon cores which are of detrital origin yielded con-
cordant results (Concordance N 90%) and their 207Pb/206Pb ages range
from 1969 Ma to 3403 Ma.

5.2.3. Grt and Sil-bearing Bt gneiss (WY26) of the Mayuan Group
Zircons of WY26 are mostly anhedral to subhedral and have distinct

grain sizes ranging from 40–100 × 40–300 μm. Their aspect ratios range
from 1:1–1:3. Some of the grains are small and round whereas the
others are much larger and show and long cylindrical shape. In CL im-
ages, many of them show core-rim structures with unzoned rims and
weakly zoned cores (Fig. 5). Some small grains that do not possess
cores are unzoned. The cores are mostly small, irregular or angular or
round, suggesting their detrital origin.

A total number of 111 grains were analyzed and U–Pb and
trace element results are presented in Figs. 7, 9 and Appendix
Table. Th/U ratios of zircons, including rims and some zircon cores,
sample WY03 from the Badu Group.



Fig. 7. REE patterns of zircons from the studied samples. REE normalization factors after Sun and McDonough (1989).
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are mostly b0.1 and their chondrite normalized REE patterns show
flat HREE, whereas only a few cores have Th/U ratios N0.1 and are
enriched in HREE (Fig. 7).
Fig. 8. Zircon U–Pb concordia diagrams for
Although most of the U–Pb results are discordant (concordance
b90%), the data plot on awell-defined discordiawith an upper intercept
age of ~1860 Ma and a lower intercept age of ~250 Ma (Fig. 9). These
sample WY15 from the Badu Group.



Fig. 9. Zircon U–Pb concordia diagrams for sample WY26 from the Mayuan Group.
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two ages are consistent with the ages obtained from the Badu Group as
shown above and as also reported in previous studies (Yu et al., 2009;
J.-H. Yu et al., 2012; Xia et al., 2012; Zhao et al., 2014). The upper and
lower intercept ages of this sample are also interpreted to represent
two distinct tectonothermal events that took place in this region, similar
to those recorded from sample above. None of the analyzed zircon cores
that are of detrital origin gave concordant results.
Fig. 10. Zircon U–Pb concordia diagrams for
5.2.4. Grt-bearing Sil-Bt gneiss (WY35) of the Mayuan Group
Zircons in sampleWY35 aremostly euhedral to subhedral, long pris-

matic with sizes and aspect ratios ranging from 50–100 × 100–300 μm
and from 1:1 to 1:3, respectively. Some small, round and anhedral
grains were also seen. In CL images, they show obvious core-rim struc-
tures and even core–mantle-rim structures suggesting at least two epi-
sodes of overgrowth (Fig. 5). The rims as well as some of the cores and
sample WY35 from the Mayuan Group.
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mantles are unzoned. Many cores are irregular or angular and show
weak oscillatory zones indicating their magmatic origin andmechanical
abrasion and metamorphic alteration and overgrowth.

A total number of 120 grains were analyzed and U–Pb and trace el-
ement results are presented in Figs. 7, 10 and Appendix Table. Many
of the analyzed spots were on zircon cores and their Th/U ratios are
mostly N0.1 with their chondrite normalized REE patterns showing
enriched HREE. Some of the spots were on zircon rims and mantles
and the data show low Th/U ratios (b0.1) and flat HREE (Fig. 7). The zir-
con rims and some of the mantles are obviously of metamorphic origin
because of their low Th/U ratios, flat HREE and internal structures as re-
vealed by CL images (Vavra, 1990; Rubatto and Gebauer, 1996; Rubatto,
2002; Corfu et al., 2003). The coresmight be of igneous origin and expe-
rienced partial dissolution and redeposition during two episodes of
metamorphic overprinting resulting in the core–mantle-rim structures
of zircons.

Most of the U–Pb results are discordant (Concordance b90%), how-
ever, they plot on a well-defined discordia and on a not so well-
defined discordia. The upper and the lower intercept ages of the well-
defined discordia are 1873 ± 9 Ma and 257 ± 18 Ma and these of the
not so well-defined discordia are 2622± 89Ma and 1834 ± 81 Ma, re-
spectively. Seven of the most concordant results from the zircon rims
have a weighted mean 206Pb/238U age of 248 ± 2 Ma. The two ages of
~1.85 Ga and ~250 Ma are interpreted to represent the two episodes
of metamorphic overprinting as mentioned above. The ~2.6 Ga might
suggest a Neoarchean source. TheU–Pb results of this sample are consis-
tent with those of the above three samples and with previously pub-
lished results from rocks of the Badu Group (Yu et al., 2009; J.-H. Yu
et al., 2012; Xia et al., 2012; Zhao et al., 2014). Also, the results are con-
sistent with those from rocks of the Nanshan Formation in the Mayuan
Group (Li et al., 2011a). Some of the zircon cores that are of detrital or-
igin gavemarkedly concordant results (Concordance N 95%)with 207Pb/
206Pb ages ranging from 1902 Ma to 2551 Ma.

5.3. Lu–Hf isotope analyses

Lu–Hf isotope analyses were done on the same domains where zir-
con U–Pb dating has been performed. Some zircon grains, however,
are too small and were inadequate for Lu–Hf analyses, after their LA-
SS-ICP-MS U–Pb dating. The analytical results are presented in Appen-
dix Table, and shown in Fig. 11. The Lu/Hf ratios of zircons from all the
samples are below 0.002, and therefore the accumulation of radiogenic
Hf after the formation of zircons can be ignored. Due to significant ana-
lytical errors for zircon rims that were formed during Phanerozoic
metamorphic overprinting, their Lu/Hf results will not be included.

The two obvious episodes of metamorphic overprinting have dis-
turbed the U–Pb isotope system of most zircon grains. Even though
Fig. 11.Hf isotope compositions of the samples studied. Basement rocks (Pt1) of Cathaysia
are after Xu et al. (2007); J.-H. Yu et al. (2012); X. Yu et al. (2012) and Zhao et al. (2014).
207Pb/206Pb ages could not be interpreted as the closest to crystallization
ages in the cases where the zircon grains suffered ancient Pb loss, they
are relatively closer than 206Pb/238U and 207Pb/235U ages to crystalliza-
tion ages. Based on this, we used 207Pb/206Pb ages from each rock type
for the calculation of ɛHf(t) values and crustal model ages (TDMC (Hf))
(Appendix Table). Zircons from all samples show 176Lu/177Hf ratios in
the range of 0.00004–0.00190 and 176Hf/177Hf (c) ratios of 0.280553–
0.281838. The ɛHf(t) of these zircons range from −19 to +11, mostly
negative with a peak at about −5.5. The crustal model ages TDMC (Hf)
are 1.9–4.1 Ga with a peak at about 2.7–3.0 Ga.

6. Discussion

6.1. Lithostratigraphic ages of the Badu and Mayuan Groups

Considerable work has been done on the geochronology of the Badu
Group rocks applying various analytical techniques including conven-
tional single- or multigrain TIMS method (Hu et al., 1991; Wang et al.,
1992; Gan et al., 1995), whole rock Sm–Nd and Rb–Sr method (Yang
et al., 1994; Li et al., 1996), and in-situ LA-ICP-MS and SHRIMP zircon
U–Pb methods (Li, 1997; Chen et al., 1998; Li et al., 1998; Yu et al.,
2006, 2009; X. Wang et al., 2008; Xiang et al., 2008; Zeng et al., 2008;
Li et al., 2009; Liu, 2009; Li et al., 2011a; Xia et al., 2012; J.-H. Yu et al.,
2012; Zhao et al., 2014;). Although some of the techniques applied are
not so precise, all the published ages show Paleoproterozoic ages from
the Badu group. Zhao et al. (2014) reported ca. ~1.93 Ga leucogranite
in the Badu Group and its detrital zircon ages, whole rock Sm–Nd and
zircon Lu–Hf isotope characteristics greatly resemble these of the Badu
sedimentary rocks. They proposed that the Badu sedimentary rocks or
their equivalents at depth which underwent melting might be the
source rocks of the leucogranite. Thus, it is quite likely that Badu
Group is older than 1.93 Ga. Metamorphic ages of 1.84–1.89 Ga, similar
to those obtained from zircons in sample WY15, were also reported in
previous studies (J.-H. Yu et al., 2012; Zhao et al., 2014). In sample
WY03 where the zircon overgrowth is not so obvious, no 207Pb/206Pb
age younger than 1.90 Ga was found except for the discordant ones
that plot on the discordia. Thus our results confirm that the Badu
Group is a Paleoproterozoic lithostratigraphic unit.

The age of theMayuanGroup has been a controversial issue. Some of
the previous studies proposed that the Mayuan Group might be
Neoproterozoic to Paleozoic (Wan et al., 2007; Xu et al., 2010). Li et al.
(2011a) studied the Paleoproterozoic (1.85–1.86 Ga) orthogneiss that
intruded into theMayuan Group (Fig. 1) and suggested it to be the par-
tial melting product of the paragneisses of the Mayuan Group or their
deep equivalents thus inferring that the Mayuan Group might be
Paleoproterozoic in age. We checked the samples studied by Wan
et al. (2007) and found that the Neoproterozoic ages came from zircons
inmeta-volcanic rocks (sample no. FJ0115 inWan et al., 2007 and Fig. 1)
and these rocks have whole rock geochemistry and Sm–Nd isotopes in-
distinguishable from those of volcanic rocks of the Mamianshan Group
(Pt3) (Wan et al., 2007). However, in another sample (sample no.
FJ0110 in Wan et al., 2007) which is a clastic sedimentary rock that ex-
perienced strong metamorphic overprinting during Paleozoic, no
Neoproterozoic age was found. Since only a limited number of zircon
grains were analyzed, Wan et al.'s (2007) data did not yield a well-
defined discordia. But a discordia trend can still been seen with an
upper intercept age not younger than 1.8 Ga.

Xu et al. (2010) reported LA-ICP-MS results of meta-clastic rocks
from the Dajinshan Formation of the Mayuan Group. Unlike our results,
all their analyzed spots in zircons yielded remarkably concordant re-
sults and all (except one) points plot on the concordia which is rather
intriguing. Because all the formations of theMayuanGroup experienced
high-grademetamorphism and strong deformation (Zhao and Cawood,
1999; Liu et al., 2008; Zeng et al., 2008; Liu et al., 2010), significant Pb
loss must have occurred and discordant U–Pb data are reasonably ex-
pected. A more surprising feature is that their results show neither
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Paleozoic nor Mesozoic metamorphic overprints, although these events
are extensive in this area. Importantly, the CL images of zircons in Xu
et al.'s (2010) study show clear overgrowths. The data from our study
also show some 800–900Ma 206Pb/238U ages, but are clearly discordant
and cannot be considered to represent the crystallization ages of zircon
grains. However, errors in counting time and the improper correction of
common lead during the experiment, data processing processes can
lead to discordant points plotting on the concordia. Therefore, we con-
sider that our results are more precise and can better constrain the
age of the Mayuan Group.

Two of our samples from the Dajinshan Formation of the Mayuan
Group, WY26 andWY35, record similar Paleoproterozoic metamorphic
overprint at 1859 ± 7Ma and 1873± 9Ma. The ages are similar taking
into account the analytical errors, and are also consistent with the pre-
vious studies of the Badu Groupwhich correlate the stratigraphic equiv-
alent of theMayuanGroup in Zhejiang Province (Yu et al., 2009; J.-H. Yu
et al., 2012; Xia et al., 2012; Zhao et al., 2014, among others). We there-
fore propose that the Dajinshan formation of the Mayuan Group is of
Paleoproterozoic age (older than the metamorphic overprinting at
1.86–1.87 Ga and younger than the youngest concordant U–Pb results
of detrital zircons at about 1.9 Ga).

Combinedwith previous geochronology data of theNanshan Forma-
tion of the Mayuan Group reported by Li et al. (2011a), and also of the
clastic sedimentary rocks belonging to the Dajinshan Formation report-
ed byWan et al. (2007), it is quite likely that at least part of theMayuan
Group is of Paleoproterozoic age. The other part that does not belong to
the Paleoproterozoic group is composed of volcanic rocks which are rel-
atively more mafic than the clastic components of the Mayuan Group
(Wan et al., 2007). J.-H. Yu et al. (2012) also found some mafic compo-
nents that are not Paleoproterozoic in the Badu Group. It is possible that
these Neoproterozoic volcanic components found in the Mayuan and
Badu Groups, which have similar geochemistry, U–Pb geochronology
and Sm–Nd isotopic compositions with rocks from the Neoproterozoic
Mamianshan and Longquan Groups, are not autochthonous. In other
words, they might be components of Neoproterozoic Mamianshan
and Longquan Groups adjacent to the Paleoproterozoic Mayuan and
BaduGroups and all of thesewere subsequently deformed together dur-
ing Paleozoic and Mesozoic tectonothermal events.

6.2. Episodic tectonothermal events and crustal growth of the Cathaysia
block

The Cathaysia block has experienced several episodes of reworking
related to episodic tectonothermal events, including the Paleoproterozoic
magmatism and metamorphism (Hu et al., 1991; Gan et al., 1995; Li,
1997; Xiang et al., 2008; Liu et al., 2009; Yu et al., 2009; Li et al., 2011a;
J.-H. Yu et al., 2012; Xia et al., 2012; Zhao et al., 2014), and the Paleozoic
and Mesozoic deformation, magmatism and anatexis related to high-
grade metamorphism (Wang et al., 2005; Y. Wang et al., 2010; Wang
et al., 2011; Y. Wang et al., 2012; D. Wang et al., 2013; X.L. Wang et al.,
2013; Y. Wang et al., 2013b; Y. Wang et al., 2013c; Xiao and He, 2005;
Li et al., 2006, 2010; S. Li et al., 2012a; W.Y. Li et al., 2012; Li and Li,
2007; Lin et al., 2008; Shu et al., 2008; Faure et al., 2009; Chen et al.,
2011; Mao et al., 2011, 2013; X. Yu et al., 2012; F. Zhang et al., 2012;
Huang et al., 2013; Zhu et al., 2013; etc.). During Neoproterozoic, the
Cathaysia block records significant crustal growth related to arc-
accretion or mafic/bimodal magmatism (Chen and Jahn, 1998; Li et al.,
2005; Wang et al., 2006; Li et al., 2008; L. Wang et al., 2008; Shu et al.,
2011, 2013; Zhao et al., 2011; Cawood et al., 2013;). The Paleoproterozoic
tectonothermal event is confined to the ancient basement rocks which
outcrop mainly in the northeastern Cathaysia block, namely the Badu
and Mayuan Groups. This episode of reworking has been well
constrained by previous studies (Liu et al., 2009; Yu et al., 2009; Li et al.,
2011a; J.-H. Yu et al., 2012; Xia et al., 2012; Zhao et al., 2014).

Published geochronological data related to Phanerozoic metamor-
phism in the study area and neighboring regions are shown in Fig. 12.
The two episodes of Phanerozoic reworking related to high grademeta-
morphism in the Paleozoic and theMesozoic (also called the Kwangsian
and Indosinian by Wang et al., 2012), are generally believed to have af-
fected thewhole Cathaysia block (Li et al., 2006; Li and Li, 2007; Li et al.,
2010; Y.Wang et al., 2010; 2012; 2013a; 2013c and references therein).
However, after integrating the reliable geochronological data, which are
closely related to high grade metamorphism, of the study area and
neighboring areas on the geological map (Fig. 12), we can clearly iden-
tify two zones that show different extent of metamorphic reworking by
the two episodes of tectonothermal events, thewestern Paleozoicmeta-
morphic reworking zone and the eastern Mesozoic metamorphic
reworking zone. Since the exact boundary between these two zones is
not well defined, we have shown this as a dotted line in Fig. 12. In
fact, part the eastern Mesozoic reworked zone has been pointed out
by Zhao and Cawood (2012) and Cawood et al. (2013).

Three of the samples studied in this paper record both the
Paleoproterozoic and the Mesozoic metamorphic reworking events
and they show Paleoproterozoic and Mesozoic ages of 1894 ± 15 Ma
and 236 ± 4 Ma (WY15); 1859 ± 7 Ma and 249 ± 7 Ma (WY26);
1873± 9Ma and 248± 2Ma, respectively. None of them show any ev-
idence of Paleozoic metamorphic overprinting and all of them were
sampled in the eastern Mesozoic reworked zone (Figs. 1 and 12).
Based on our results and also in conjunction with those from previous
studies discussed above, we propose three tectonothermal events
which caused zircon overgrowth in different parts of northeastern
Cathaysia block. The Paleoproterozoic episode of tectonothermal event
is recorded by the ancient basement rocks belonging to the Badu and
Mayuan Groups at about 1.8–1.9 Ga. The Paleozoic episode occurred at
about 415–480 Ma with a peak at about 450 Ma and this episode of
tectonothermal event is recorded by the Tianjingping Group, part of
theMayuan Group (Wan et al., 2007), as well as the Neoproterozoic se-
quences such as Tiaoxi Formation and the Zhoutan Group (Fig. 12). The
western part of the northeastern Cathaysia block was more obviously
reworked during this episode of metamorphism. The Mesozoic episode
took place at about 230–250 Ma and the eastern part of the northeast-
ern Cathaysia block was more obviously reworked during this
tectonothermal event. Thus it seems that the Phanerozoic high grade
metamorphism related to these episodes of tectonothermal events is
not distributed all across the Cathaysia block, but it is quite likely that
their distribution is regional and they form different reworked zones
as shown in Fig. 12.

Based on the above discussion, it seems that the two episodes of
Phanerozoic tectonothermal events affecteddifferent parts of the north-
eastern Cathaysia block differently. As to the several Paleozoic meta-
morphic rocks in the Mesozoic metamorphic reworked zone in Fig. 12
(Chen et al., 2008; Y. Wang et al., 2012; Xia et al., 2014 and references
therein), they might be allochthonous. Because while the Paleozoic
rocks show few evidence for Mesozoic deformation and metamor-
phism, their country rocks all show very strongMesozoic metamorphic
reworking, clear foliation and lineation and metamorphic zircon
overgrowth. However, there can also be other explanations of the spa-
tial distribution of the Phanerozoic metamorphism. Chen et al. (2008)
argued that the Paleozoic tectonothermal event did not affect the
Paleoproterozoic basement rocks of the Cathaysia block that strongly
like the Mesozoic tectonothermal event. Hsü et al. (1990) proposed
that the Paleoproterozoic basement rocks, namely the Badu and
Mayuan group rocks, might form a big antiform caused by theMesozoic
orogeny. So it is also a feasible explanation that in the area where the
Badu andMayuan group rocks outcrop, rocks in only the shallow crustal
level were involved during the Paleozoic tectonothermal event if there
were any. But during the Mesozoic tectonothermal event, rocks in the
deeper crustal level, more precisely the rocks of the Badu and Mayuan
group, were involved. Most of the Paleozoic metamorphic rocks have
been subjected to uplift and erosion, and this resulting in the
exhumation of the Mesozoic metamorphic rocks from deeper crustal
levels.



Fig. 12.Distribution of Phanerozoic tectonothermal events in the reworked zones of the Cathaysia block. Geochronological data are fromYeet al. (1994), Chen et al. (1998), Yu et al. (2005),
Yu et al. (2007), Yu et al. (2009), Wan et al. (2007), Xiang (2008), Chen et al. (2008), Zeng et al. (2008), Li et al. (2010), Liu et al. (2010), Hu et al. (2011), Xia et al. (2012), Y. Wang et al.
(2012), X.L. Wang et al. (2013), Zhao et al. (2014) and this study.
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Yu et al. (2006) described the Cathaysia block as a young continent
composed of ancient materials. Detrital zircons from across the block
contain abundant Archaean to Paleoproterozoic record, with some
rare evidence for Archaean rock inclusions within Phanerozoic intru-
sions (Fletcher et al., 2004; Xu, 2005; Xu et al., 2007; J. Yu et al., 2007;
Yu et al., 2010; Wan et al., 2010; Zhao et al., 2010; Li et al., 2011b;
Zheng et al., 2011; Xia et al., 2012; Cawood et al., 2013 and references
therein). These studies mentioned proposed episodic crustal growth of
the northeastern Cathaysia block at about 3.6 Ga, 2.9 Ga, 2.7 Ga,
1.85 Ga, 0.8–0.7 Ga. In the southwestern Cathaysia block, these events
occurred at 3.6 Ga, 3.3 Ga, 2.5–2.6 Ga, 1.6 Ga, 1.0 Ga and 0.8–0.7 Ga.
Lu–Hf isotopes of the samples in this study show a peak of TDMC (Hf) at
about 2.7–3.0 Ga which is consistent with the previously proposed
crustal growth time in the northeastern Cathaysia block. Our results
confirm the possibility that Cathaysia block contains Archaean
basement.

6.3. Tectonic significance

The Badu and Mayuan Groups are mainly composed of metapelites
andmetagreywackes,with a commonmineral assemblage of sillimanite
+ garnet + biotite + plagioclase + quartz, as described in our study
and also as reported in previous investigations by Fujian, BGMR (Bureau
of Geology and Mineral Resources of Fujian Province) (1985), Hu et al.
(1991), J.-H. Yu et al. (2012) and Zhao et al. (2014), typical of a
continental shelf sequence. Some of the Paleoproterozoic S-type
granites of the region (Yu et al., 2009; Li et al., 2011a; Zhao et al.,
2014), are believed to be the partial melting products of these
metasedimentary rocks or their deeper equivalents. Yu et al. (2009)
proposed a Paleoproterozoic orogeny to explain the 1.85–1.89 Gameta-
morphism and magmatism of the Badu region. However, Xia et al.
(2012) argued that the 1.85–1.89 Ga metamorphism and magmatism
might not be the result of an orogeny, but was caused bymagma under-
plating in an extensional environment.

Zhao et al. (2014) discovered 1.93 Ga collision-related leucogranite
in the Badu region, which also record the ~1.87 Ga metamorphism,
and proposed that the collisional event took place at ~1.93 Gawith sub-
sequent 1.85–1.89Gametamorphismandmagmatism in an extensional
environment caused bymagmaunderplating. Samples of this study also
recorded the Paleoproterozoic metamorphism at 1.86–1.89 Ga. Thus, it
seems that the Paleoproterozoic metamorphism and magmatism not
only occurred in the Badu region, but also took place in the Mayuan re-
gion. This extensive Paleoproterozoic thermal event is believed to rep-
resent the response of the Cathaysia block related to the assembly of
the Columbia supercontinent (Rogers and Santosh, 2002, 2003; Zhao
et al., 2002, 2003, 2004; Santosh et al., 2009, 2011; Meert, 2013;
Robers, 2013; Nance et al., 2014).

The Paleozoic tectonothermal event in South China is generally be-
lieved to have occurred in an intraplate environment (Charvet et al.,
2010; Li et al., 2010; Y. Wang et al., 2010; Wang et al., 2011; Y. Wang
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et al., 2013c), although the cause of this orogeny is still debated. Li et al.
(2010) proposed possible causes like the far-field tectonic compression,
and flat-slab subduction. Charvet et al. (2010) argued that this orogeny
might be related to the underthrusting of the southern part of the South
China Block beneath the northern part of this block which closed the
pre-existing Nanhua rift. Y. Wang et al. (2010) and Wang et al. (2011)
suggested that this (Kwangsian) orogenesis is probably the far-field re-
sponse to the assembly of the Australian–Indian plate with the
Cathaysia block.

The Mesozoic tectonothermal event, similar to that of the Paleozoic,
is also a controversial issue. Hsü et al. (1988) proposed a southeastward
subduction and final collision model to explain this event. John et al.
(1990) suggested that this episode of reworking might be related to
the collision of microcontinental blocks. Zhou et al. (2006) argued that
it might be related to tectonic transition from continent–continent col-
lision within the broad Tethyan oceanic domain to the subduction of
Paleo-Pacific plate. Li and Li (2007) used the flat-slab subduction of
the Paleo-Pacific plate underneath the southeastern Eurasia to explain
this event. Y.Wang et al. (2013a) proposed amodel that the progressive
subduction and collision of the Indochina plate with the South China
Block and also the contemporaneous interaction of the South China
Blockwith the North China Craton might have all affected theMesozoic
intraplate reworking of the Cathaysia block.

Although our new findings on the spatial distribution of Phanerozoic
metamorphism in northeastern Cathaysia block cannot provide definite
solutions, they help to improve the understanding of the Phanerozoic
evolution of the Cathaysia block.

7. Conclusion

(1) The metasedimentary units of the Badu and Mayuan Groups
have similarmineral assemblages of garnet+ sillimanite+ bio-
tite + plagioclase + quartz ± K-feldspar ± graphite as well as
high contents of SiO2 and Al2O3, which confirm that these rocks
belong to the same lithostratigraphic unit.

(2) Zircon U–Pb results yield two discordia intercept ages of
~1990 Ma and ~2450 Ma in one sample from the Badu Group;
zircons in another sample show intercept ages of ~3.5 Ga,
2.5 Ga, 1858 Ma and 233 Ma. Discordia intercept ages of
1859 Ma and 249 Ma are yielded by one sample from the
Mayuan Group; another sample shows ages of ~2.6 Ga,
1873 Ma, 257 Ma and a weighted mean 206Pb/238U age of
248 Ma. Both the 1.86–1.87 Ga and 230–250 Ma ages are
interpreted to represent the time of metamorphic reworking.
The Paleoproterozoic metamorphic event is consistent with pre-
vious results and is considered to be the response to the assem-
bly of the supercontinent Columbia in the Cathaysia block.
These results confirm again that the Badu Group is a
Paleoproterozoic lithostratigraphic unit and also suggest that at
least part of the Mayuan Group is Paleoproterozoic. Rocks of
this study also show that both lithostratigraphic preserve evi-
dence for Mesozoic metamorphic reworking at about 230–
250 Ma and they show no evidence of Paleozoic metamorphic
reworking.

(3) Zircon Lu–Hf isotope results show ɛHf(t) values in the range of
−19 to −11 with a peak of −5.5 and TDMC (Hf) ranging from
1.9 to 4.1 Ga with a peak at about 2.7–3.0 Ga suggesting that a
major crustal growth took place during this time. This is consis-
tent with previously suggested crustal growth peaks of ~2.7 Ga
and ~2.9 Ga.

(4) A summary of the more precise geochronological data set from
published works together with those of present study on the
Phanerozoic metamorphic reworking of northeastern Cathaysia
block shows that rocks were reworked during different Phanero-
zoic tectonothermal events in different zones. Rocks reworked by
the Paleozoic tectonothermal event mainly outcrop in the
western zone whereas those reworked during Mesozoic occur
dominantly in the eastern zone. Previous models which propose
uniform distribution of these rocks all across the northeastern
Cathaysia block will have to be reconsidered.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gr.2014.03.019.
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