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ABSTRACT

The scalar median filter (SMF) is often used to reduce
noise in scalar geophysical data. We present an extension
of the SMF to a vector median filter (VMF) for suppressing
noise contained in geophysical data represented by multidi-
mensional, multicomponent vector fields. Although the
SMF can be applied to each component of a vector field in-
dividually, the VMF is applied to all components simulta-
neously. Like the SMF, the VMF intends to suppress
random noise while preserving discontinuities in the vector
fields. Preserving such discontinuities is essential for ex-
ploration geophysics because discontinuities often manifest
important geologic features such as faults and stratigraphic
channels. The VMF is applied to synthetic and field data
sets. The results are compared to those generated by using
SMF, f-x deconvolution, and mean filters. Our results indi-
cate that the VMF can reduce noise while preserving discon-
tinuities more effectively than the alternatives. In addition, a
fast VMF algorithm is described for reducing computation
time.

INTRODUCTION

Constructing subsurface images and estimating rock properties
within the earth are essential tasks for exploration geophysics.
Many types of data (e.g., seismic or electromagnetic) are acquired
and processed for probing the subsurface structures and rock prop-
erties. These data are often acquired remotely from targets and may
suffer from severe noise contamination. In many cases, noise in data
must be reduced by data processing before useful information could
possibly be extracted from the raw measurements.
Many practical methods have been developed for noise reduction

in geophysics. Examples include the mean filter (mean values cal-
culated in moving windows), f-k filter, f-x deconvolution (Canales,

1984; Marfurt, 2006), Radon transform (Sacchi and Porsani, 1999;
Sacchi et al., 2004), edge-preserving smoothing (Luo et al., 2002),
and scalar median filter (SMF) (Mi andMargrave, 2000). Compared
to other methods, the SMF filtering technique often produces less
smearing among adjacent samples after noise attenuation. For ex-
ample, the SMF can remove an abnormal impulse from seismic re-
cords without smearing the impulse into its nearby samples as the
mean or f-k filters do. The SMF can also be used to separate the up-
and downgoing wavefields in vertical seismic profile (VSP) data
because it often reduces interference between these two wavefields.
Despite the fact that numerous types of geophysical data are

naturally represented by vector fields, the vector median filter
(VMF) is seldom employed in data processing. On the other hand,
SMF is commonly used in exploration geophysics. Examples of vec-
tor geophysical data include electromagnetic data, multicomponent
seismic wavefields, dip and azimuth of events in 3D seismic images,
fracture orientations, move-out slopes in migrated common-image
gathers, amplitude and phase spectra of seismic traces, and wind-
owed segments of seismic traces. Because each component of a vec-
tor field reflects a certain property of a common objective, there may
be some coherent relation between these components. Therefore, it
can be beneficial to process all components of a vector field simul-
taneously, rather than treat each component as an independent
scalar field.
We introduce the VMF to reduce noise in vector fields. The VMF

was first recommended for image processing, and many papers have
been published on this subject (Astola et al., 1990; Plataniotis et al.,
1998; Caselles et al., 2000; Lukac and Smolka, 2003; Spence and
Fancourt, 2007; Liu et al., 2009). Astola et al. (1990) demonstrate
that the VMF can reduce noise while preserving sharp boundaries in
color images, where each pixel is represented by three (i.e., red,
green, blue) component vectors. For comparison, it has been de-
monstrated that applying the SMF to each color component indivi-
dually produces an inferior result. In this paper, we demonstrate
similar benefits in applying the VMF to attenuate noise in a dip/
azimuth vector field derived from a migrated seismic image. First,
we introduce the concepts of the median value, median vector, SMF,
and VMF, along with a fast VMF algorithm. Then, we describe
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three properties of the SMF and VMF. Finally, we apply the VMF to
synthetic and field seismic data to demonstrate that the VMF can
effectively reduce noise while preserving discontinuities.

THEORY

Median vector

Let us start by defining the well-known scalar median value.
Given a set of scalars Si ¼ faig i ¼ 1; 2; : : : ; N, if the set is sorted
into ascending (or descending) order, then the value of a member in
the middle of the sorted set is the median. This sorting-based de-
finition is intuitive and easy to understand, but hard to extend to a
set of vectors. To allow for an extendable definition, we redefine the
scalar median value based on a minimum-distance concept. The
median member am, according to the minimum-distance definition,
is the member whose distance to all other members in the set is
smallest. This definition can be expressed as

am ¼ argmin
am∈Si

XN
i¼1

kam − aikL; (1)

where i is the summation index, N is the number of members in the
set, and L denotes the order of the norm. Any proper norm (e.g., L1,
L2 or L∞) is eligible to be used in this definition.

It is easy to prove (see Appendix A) that the median value defined
by equation 1 is identical for any scalar data set, regardless of what
type of norm or sorting is chosen. In addition to the proof, the
equivalence of these two definitions can also be demonstrated using
a simple example. For a five-member set f1; 2; 3; 4; 5000g, the
median value is three, according to the sorting-based definition.
For the minimum-distance definition, the summed L1-norm
distances from the first member to all other members is
k1−1kþk2−1kþk3−1kþk4−1kþk5000−1k¼ 5005. Simi-
larly, the summed distances from the second, third, fourth, and fifth
members are 5002, 5001, 5002, and 19,990, respectively. Here, the
minimum distance is 5001 and is associated with the third member.
Therefore, the median value obtained from this definition is three,
the same as that based on the sorting approach.

Figure 2. The median vector depends on the choice of norm for the
three vectors a, b, and c. If the L2 norm is used, the median is a,
because the Euclidean distance from a to c is smaller than the dis-
tance from b to c. For the L1-case, the L1-distance a to c is larger
than b to c because the horizontal distance from a to b is less than
the vertical distance.

Figure 1. Comparison of the vector median vector and the scalar
median vector. The median vector a3 is a member of the input
set of vectors, whereas the scalar median vector asm found by taking
the scalar median of each component of vectors in the input set is
not a member of the input set.

Figure 5. Two geologic structural trends indicated with vectors
along northeast and southeast.

Figure 4. A 1D scalar function (a) is filtered using one iteration (b),
five iterations (c), and fifty iterations (d) of the SMF.

Figure 3. A 2D vector field (a) is filtered using the VMF (b). Note that the discontinuity between the second and third rows of vectors is
preserved, while the erroneous vectors have been removed. Applying the VMF a second time (c) results in no further change to the vector field
shown in (b).
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Equation 1 can be easily extended to define the median vector,
which is the vector am for which

am ¼ argmin
am∈si

XN
i¼1

kam − aikL: (2)

Equation 2 is the same as equation 1, except that the scalar ai is
now replaced by the vector ai, where bold letters indicate vectors
and Si ¼ faig is a vector set. Indeed, equation 1 can be considered a
special case of equation 2 when the vector has only one component.
A simple example of a median vector for a five-member 2C vector
set is depicted in Figure 1. There, the input vectors a1 through a5 are
unit vectors with coordinates (−1, 0), (−0.707,
0.707), (0,1), (0.707, 0.707), and (1,0). Using
equation 2, we can find that a3 ¼ ð0; 1Þ is the
median vector because the L2-norm summed dis-
tance from a3 to all other vectors is the smallest.
In contrast, if we attempt to calculate the median
vector asm by finding the scalar median among
components of the vectors, the mixed “median”
vector asm will be (0, 0.707). Note that asm is not
a member of the five-member input vector set.
Creating a member not originally in the input
may blur sharp boundaries.

VMF

Based on the median vector defined in equa-
tion 2, we define the VMF. The VMF is similar to
the mean filter, which smooths data by taking the
mean within a windowed subset of the data. In-
stead of finding the mean for every windowed
subset, the VMF finds the median vector. Given
a set of vectors Si ¼ fai−j; ai−jþ1; : : : ; aiþj−1;
aiþjgwhere j is the window half-width, the med-
ian vector is defined as

ami
¼ argmin

am∈Si

Xk¼iþj

k¼i−j
kam − akkL: (3)

This definition is applicable to SMFs and
VMFs.
The distance in equations 2 or 3 can be com-

puted using any norm. When uncorrelated noise
is present in the data, the L1 norm typically
produces the best results. However, when there
is coherent noise in the data, other norms (often,
the L2 norm) produce better results in many
practical applications (Plataniotis et al., 1998).
Figure 2 illustrates that the median vector depends
on the choice of norm. In the figure, there are three
vectors a, b, and c.
In this example, if the L2 norm is used, the

median vector is a because the Euclidean distance
jbcj > jacj > jabj. For the L1-case, the L1-
distance jacj > jbcj because the horizontal dis-
tance from a to b is less than the vertical distance.
It is useful to note that SMF results are indepen-
dent of the norm order (proved in Appendix A),
whereas the VMF output depends on the norm
order.

It is possible that more than one vector satisfies the minimum
summed distance criterion. In this case, we introduce an addi-
tional condition to remove this ambiguity. For example, we
might choose — among vectors having equal minimum summed
distance — the one closest to the input vector at the center of
the moving window.

Fast computation of the VMF

Computing median vectors for a large data set can be expensive.
Given a moving window with half-width W∕2 (whereW is an even

Figure 6. (a) The vector field of Figure 5 after applying random rotations of up to
±19.79 northeast and ±12.53 southeast. (b) The difference between the rotated
and unrotated angles.

Figure 7. A comparison of the vector fields between the unrotated (red) (Figure 5) and
after filtering the rotated vector fields of Figure 6a by the f-x deconvolution filter (green)
(a), and their dip difference (b).

Figure 8. A comparison of the vector fields between unrotated (red) (Figure 5) and after
filtering the rotated vector fields of Figure 6a by the mean filter (green) (a), and their dip
difference (b).
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number), then OðWÞ operations are required to compute the
summed distance from one vector to all others. Thus, computing
all summed distances requiresOðW2Þ operations. For a 1D function
with N vectors, the computational cost isOðN �W2Þ. In contrast, to
compute one output value using a mean filter requires only OðNÞ
operations if the filter is implemented properly.
Fortunately, the computational cost of the VMF for a 1D function

can be reduced from OðN �W2Þ to OðN �WÞ using the fast VMF
algorithm proposed by Astola et al. (1990). This cost reduction is
achieved by reusing the summed distances computed for previous
windows. We demonstrate the fast VMF concept with a simple
1D example, but the same principle can be applied to higher
dimensions.
We revised the fast algorithm to make it easier to understand and

implement. Let akj denote the jth vector in the kth subset or window
containingW þ 1 vectors, and skj denote the summed distance to all
other vectors in the kth window

skj ¼
XWþ1

i¼1

kakj − aki kL; j ¼ 1; 2 : : : ;W þ 1; and

k ¼ 1; 2; : : : ; N. (4)

Then, write skþ1
j in terms of skj :(

skþ1
j ¼skjþ1þkakþ1

j −akþ1
Wþ1kL−kakjþ1−ak1kL; j¼1; :::W; andk¼1; :::;N

skþ1
Wþ1¼

PWþ1
i¼1 kakþ1

Wþ1−akþ1
i kL

:

(5)

Note that vector akþ1
j is the same as akjþ1. With this in mind, the

interpretation of equation 5 is simple — it removes the contribution
of ak1 from skj and adds the contribution of akþ1

Wþ1 to skþ1
j . The fast

algorithm described by equation 5 requires only 2 � ðW þ 1Þ opera-
tions to calculate all sums in the (kþ 1)th window. Therefore, the
total cost is OðN �WÞ. Equation 5 is applicable to the SMF and the

VMF, and the computational costs of both filters
are of the same order.

VMF PROPERTIES

The VMF possesses three important proper-
ties: closure, edge preservation, and iteration in-
variance. These properties allow the VMF to
preserve discontinuities while attenuating noise.

Property 1: Closure

The closure property requires that the median
vector is a member of the input set. This means
that the VMF will never output a vector that does
not exist in the original input set of vectors. This
property does not apply to the mean filter. For
example, for a set f 1 2 6 g, the median value
is 2, wheras the mean value is 3, which does not
exist in the original set. This closure property
may seem trivial, but it leads to the next two im-
portant properties.

Property 2: Edge preservation

The most attractive feature of the VMF is that
it reduces noise while preserving edges, or dis-
continuities, in the data. To illustrate this prop-
erty, Figure 3 shows an example simulating a
geologic unconformity. In the figure, the first
two rows of vectors are mostly horizontal,
whereas the last two rows are nearly vertical.
The VMF with a window size 3 × 3 is applied
to the 2D vector field shown in Figure 3a. The
window moves from left to right and from top
to bottom to cover the whole area and outputs

Figure 9. A comparison of the vector fields between unrotated (red) (Figure 5) and after
filtering the rotated vector fields of Figure 6a by the SMF filter (green) (a), and their dip
difference (b).

Figure 10. A comparison of the vector fields between unrotated (red) (Figure 5) and
after filtering the rotated vector fields of Figure 6a by the L1-VMF filter (green) (a),
and their dip difference (b).

Table 1. Differences in rms dip (degree).

Filter L1-VMF L2-VMF SMF f-x deconvolution Mean Input (without filtering)

rms 4.752 4.873 4.941 12.28 8.668 9.550
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the median vector at the center of each window (shown in Fig-
ure 3b). Notice that the erroneous vectors in Figure 3a have been
removed and the boundary of the unconformity is preserved.
There are other ways to reduce the noise in Figure 3a. Perhaps the

simplest is to calculate the mean vector by separately averaging
each component of vectors within a moving window. However,
as the mean vector is a mix of different vectors, the output will con-
tain other vectors beside the two kinds of vectors shown in Figure 3b
and the sharp boundary will be blurred. Another possible way to
reduce noise is to apply the SMF to each component of the vector

field separately. However, others (e.g., Astola et al., 1990) have
shown that the VMF produces better results than applying multiple
SMFs to individual vector components.

Property 3: Iteration invariance

Because the output vector of a VMF is one of the input vectors,
in some circumstances, the output of the VMF will be identical to
the input. Such an input is referred to as the root function of
the VMF.

Figure 11. (a) through (d) show the output of ap-
plying L2-VMF with window size of 3, 5, 9, and
15 samples, respectively, to the vectors with ran-
dom noise (Figure 6a) where green shows the fil-
tering results and red is the unrotated vectors
(Figure 5).

Figure 12. Dip difference after filtering using the
L2-VMF with window sizes of 3 (a), 5 (b), 9 (c),
and 15 (d) samples in each axis.
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Figure 4 demonstrates the iteration invariance of the SMF for a
1D scalar field. Because the input function is 1D, a SMF (a special
case of VMF) is used. As a 1D median filter, a 21-sample window
moves from left to right, and a median value is generated at the
center of each window. After one (Figure 4b) and five (Figure 4c)

iterations, the SMF has reduced the noise in the input function and
maintained a step-like function. More iterations (Figure 4d) after the
fifth one result in no further change to the result shown in Figure 4c.
This property, known as iteration invariance, is inherited by the
VMF. The first iteration of VMF applied to the input vector field
shown in Figure 3a produces the noise-free vector field (Figure 3b).
Figure 3c shows no further change after applying the VMF again
to the vector field shown in Figure 3b. The edge-preserving
property of the VMF makes it a desirable tool for noise reduction
while maintaining discontinuities. Moreover, because the output
of the VMF becomes iteration invariant, the VMF can be applied
recursively until a stable result (i.e., the root function) is
obtained.

NUMERICAL EXAMPLES

To evaluate the effectiveness of the VMF, we designed a synthetic
2D vector field to simulate a geologic unconformity (Figure 5)
based on the prototype of real data. The vector field consists of
two distinguishing sets of vectors — the northeast and southeast
vectors. To introduce noise, the orientations of the northeast vectors
are randomly rotated up to ±19.79 and the southeast vectors
±12.53° from their original angles. The vector field after the ran-
dom rotations is shown in Figure 6a; and the difference between the
rotated and unrotated angles is shown in Figure 6b.
Figures 7, 8, 9, and 10 display, respectively, the results after ap-

plying f-x deconvolution, a mean filter, a SMF and a L1-VMF to the
rotated data shown in Figure 6a. The window size and filter length
used in the f-x deconvolution are 100 and 40, respectively. The win-
dow size for the other approaches is 5 × 5. The filtered results are
compared to the unrotated vectors shown in Figure 5. We kept the
length of the vectors constant and measured the angle errors be-
tween the nonrotated and rotated vectors. As seen in Figures 7b
and 8b, the angle differences are reduced significantly in areas away
from the unconformity boundary after applying the f-x deconvolu-
tion, or mean filter; however, large differences still remain near the
boundary. These large errors can also be seen in Figures 7a and 8a
where the green arrows gradually change from southeast to north-
east. The unconformity boundary is poorly preserved by f-x decon-
volution, or mean filtering.
Figures 9 and 10 are, respectively, the results of applying the

SMF and L1-VMF. Figures 9b and 10b show that the unconformity
boundary is preserved better than in Figures 7b and 8b. For a more
objective comparison, we introduce a quantitative root mean square
(rms) index between angles of the filtered and intact vectors. This

index serves as a simple indication of the effec-
tiveness of various approaches. The calculated
rms dip differences are listed in Table 1. The
rms of the f-x deconvolution result is even larger
than the rms of the input data. This may be due to
the mixture of northeast and southeast vectors
near the unconformity.
Figure 11a, 11b, 11c, and 11d shows the out-

put after applying the L2-VMF with square win-
dow sizes of 3, 5, 9, and 15, respectively. Note
that for the region away from the unconformity,
more noise is attenuated as the window size
becomes larger. In contrast, the discontinuity is
better preserved for smaller window sizes (Fig-
ure 12). Figure 13 summarizes the rms difference

Figure 13. The quality of VMF noise reduction and edge preserva-
tion as a function of window size. The quality measure is the rms
difference between the filtered result and the correct vector field.

Figure 14. A migrated seismic amplitude section, which is used as
the input for computing dip vectors of seismic events at every
sampled location. Note there is an abrupt dip change around the
center of the figure.

Figure 15. A subset of the dip vectors before (a) and after (b) applying the L1-VMF.
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as a function of window size. The minimum rms is reached when
the window size is 5 × 5. In this example, and for this criterion, the
window size of 5 optimizes the noise attenuation and edge preser-
vation. In general, the optimal window size is data-dependent.

APPLICATION TO 2D FIELD SEISMIC DATA

Figure 14 shows a 2D migrated vertical seismic section, which is
a portion of an inline section of a 3D migrated cube. The displayed
section has 300 traces and 200 time samples. The trace interval is
25 m and the temporal sample rate is 4 ms. Using structure tensors
(Fehmers and Hocker, 2003; Luo et al., 2006), we computed the
local dip vectors of seismic events at every sample location. The
dip vectors are not physical dips, but are defined in terms of sam-
ples. In other words, they are normalized using a velocity of
25 m∕0.004 s ¼ 6250 m∕s. The computed dip vectors are overlain
on the section of Figure 15a. The dip vectors are parallel to local
events in the image, and the length of the dip vector varies accord-
ing to the lateral coherency of nearby traces. Figure 15b shows the
result of applying the L1-VMF with a window size of 13 to the
vector field shown in Figure 15a.
Figure 16 shows a zoom of the box marked on

Figure 15a. Figure 17 shows the result of apply-
ing a mean filter, f-x deconvolution, SMF, L2-
VMF, and L1-VMF, where the windows size is
5 × 5, except a window size of 100 and filter
length of 40 are used for f-x deconvolution.
The mean filter, f-x deconvolution, and SMF are
applied to each component of the vector field
separately, whereas the VMFs are applied to
all components. The white lines in Figure 17a
through 17e indicate an interpreted unconfor-
mity, across which we expect the dip vectors
to change abruptly. Note that the green arrows
in Figure 17a and 17e change gradually near
the unconformity, which indicates that the mean
filter and f-x deconvolution are blurring the dis-
continuity. In contrast, the results of the SMF
(Figure 17b), L2-VMF (Figure 17c) and L1-
VMF (Figure 17d) show better preservation of
the discontinuity in the vector field.
As the window size becomes larger, the com-

putation time for VMF increases accordingly.
Figure 18 depicts the computation time for
applying the L2-VMF to the data shown in
Figure 15a. Although the fast VMF algorithm
is used, the computation cost for the VMF is still
very high. The computation time as measured by
using a MATLAB code on a workstation is de-
pendent on window size and the number of com-
ponents. Nevertheless, an algorithm based on the
fast VMF has been developed and applied to 3D
prestack data for separating blended seismic wa-
vefields generated by simultaneous sources (Huo
et al., 2009). Note that the number of vectors in
the window is the square of the window size for
2D cases, so the computing time increase de-
picted in Figure 18 seems much faster than a lin-
ear speedup with window size.

Figure 16. Zoom of the computed dip vectors of Figure 15a.

Figure 17. Field data after filtering by mean filter (a), SMF (b), L2-VMF (c) and L1-
VMF (d), f-x deconvolution (e), respectively.
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CONCLUSIONS

We have extended the SMF to the VMF for reducing random
noise in geophysical vector fields, while preserving discontinuities.
A fast algorithm for implementing the VMF is described. The
VMF and SMF effectively reduce noise in vector fields while
preserving discontinuities. The result of applying VMF to
synthetic data is superior to applying SMF as measured by rms er-
ror. This demonstrates that VMF is slightly better at noise reduc-
tion because VMF uses the correlation between components. A
field data example demonstrates that all median filters preserve
the discontinuity much better than does the mean filter or
f-x deconvolution.
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APPENDIX A

EQUIVALENCE OF TWO DEFINITIONS FOR
1D DATA

In this appendix, we show that median values based on the mini-
mum-distance and sorting are equivalent. For a data set with 2Pþ 1

scalar values, we sort the set into ascending order, i.e., aj,
j ¼ 1; 2; : : : ; 2Pþ 1, and denote the median value derived from
the sorting set by aPþ1. To prove the equivalence, we need to show
that the distance from aPþ1 to the rest of the values is the smallest.
As a first step, the following shows that the summed distance from
aPþ2 to all other values is larger than the distance to aPþ1

X2Pþ1

j¼1

kðaj − aPþ2Þk ¼
XPþ1

j¼1

kðaPþ2 − ajÞk

þ
X2Pþ1

j¼Pþ2

kðaj − aPþ2Þk. (A-1)

Because aj has been sorted into ascending order and a member
with larger index is greater or equal to all others with smaller

indices, we can dismiss the norm symbol and rewrite the equation
as following

XPþ1

j¼1

fðaPþ2 − aPþ1Þ þ ðaPþ1 − ajÞg

þ
X2Pþ1

j¼Pþ2

fðaj − aPþ1Þ − ðaPþ2 − aPþ1Þg

¼
�XPþ1

j¼1

kðaj − aPþ1Þk þ ðPþ 1ÞkðaPþ2 − aPþ1Þk
�

þ
� X2Pþ1

j¼Pþ2

kðaj − aPþ1Þk − ðPÞkðaPþ2 − aPþ1Þk
�

¼
X2Pþ1

j¼1

kðaj − aPþ1Þk þ kðaPþ2 − aPþ1Þk. (A-2)

The first term in equation A-2 is the summed distance from the
sorting-based median value; therefore, the summed distance from
aPþ2 is larger than that from aPþ1. This proof can be extended
to any member aj, and the norm could be in any order because
aj are scalars.
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Figure 18. The L2-VMF computation time versus window size.
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