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ABSTRACT

High-resolution image and waveform inversion of small-
scale targets requires the handling of high-frequency seismic
wavefields. However, conventional finite-difference (FD)
methods have strong numerical dispersions in the presence
of high-frequency components. To reduce these numerical
dispersions, we optimized the constant coefficients of the
FD operator by maximizing the wavenumber coverage with-
in a given error limitation. We set up three general criteria to
enhance the convergence of the algorithm and reduce the
optimization effort. We selected the error limitation to be
0.0001, this being the smallest in the literature, which led
to perfect agreement between theoretical analyses and nu-
merical experiments. The accuracy of our optimized FD
methods can even reach that of much higher order unopti-
mized FD methods, which means great savings of computa-
tional efforts and memory demand. These advantages
become even more apparent with 3D modeling, especially
for saving memory demand.

INTRODUCTION

The finite-difference (FD) scheme is popular in seismic wave
modeling because of its simplicity in numerical implementation
and its ability to handle heterogeneous media. The FD method is
usually the first choice in reverse time migration (Etgen and
O’Brien, 2007) and full waveform inversion (Virieux and Operto,
2009). The FD method is also very popular in many other geophys-
ical simulations, such as ocean acoustics and volcanic explosions.
The main drawback of the conventional FD method is that it has
strong numerical artifacts, also called “numerical dispersions,” in
the presence of high-frequency components or a coarse grid. Nu-
merical dispersions are much more serious for large-scale models

because it is impractical to use a fine grid due to the extremely large
memory demand and computational cost. In such a case, we have to
greatly decrease the dominant frequency to make the program run-
nable on current computers in an acceptable period of time. How-
ever, high-frequency components are critical for achieving high
resolutions; thus, it is vitally necessary to reduce the numerical dis-
persions inherent to the FD method.
The pseudospectral method (Kosloff and Baysal, 1982) is free of

numerical dispersions for high-frequency components and a coarse
grid, regardless of error due to the time discretization, but it is not
attractive for large-scale models because of the heavy computa-
tional cost. The pseudospectral method is the high-accuracy limit
of high-order FD methods; thus, one can approach this method
to reduce the numerical dispersions of the FD method (Holberg,
1987; Yang et al., 2002; Chu and Stoffa, 2012; Li et al., 2012).
It is popular to apply a tapered window to avoid the truncation ef-
fects while reducing the numerical dispersions. Zhou and Green-
halgh (1992) use a Hanning window to derive convolutional FD
operators; Igel et al. (1995) use a Gaussian window to develop stag-
gered-grid FD operators; and Chu and Stoffa (2012) propose bino-
mial windows, which are analytical extensions from conventional
FD methods. Unfortunately, each of these windows involves some
control parameters that are difficult to determine. At the same time,
these windows need to be handled carefully because they can sig-
nificantly affect the final numerical performance.
In fact, the final operator of the FD method is a series of real

numbers; thus, there is no need to search for a proper window first
and then mask it to the original operator. In other words, one can
directly design the final operator itself. The basic idea is to enlarge
the wavenumber coverage within a given error limitation (Holberg,
1987; Robertsson et al., 1994). Holberg (1987) optimizes the FD
operator by minimizing the peak relative error of the group velocity
within a spatial frequency band; Etgen (2007) suggests using the
phase velocity and further including the effect of time discretiza-
tion. For this kind of method, we find that it is essential to select
a proper error threshold to obtain solid accuracy improvement.
Unfortunately, previous works do not pay enough attention to this

Manuscript received by the Editor 17 July 2012; revised manuscript received 1 September 2012; published online 21 December 2012.
1Chinese Academy of Sciences, Institute of Geology and Geophysics, Beijing, China. E-mail: geophysics.zhang@gmail.com; yaozx@mail.igcas.ac.cn.

© 2012 Society of Exploration Geophysicists. All rights reserved.

A13

GEOPHYSICS, VOL. 78, NO. 1 (JANUARY-FEBRUARY 2013); P. A13–A18, 4 FIGS., 1 TABLE.
10.1190/GEO2012-0277.1

D
ow

nl
oa

de
d 

12
/3

1/
12

 to
 1

29
.4

9.
79

.5
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



problem. The widely used error limitations from 0.0003 to 0.03, as
Holberg (1987) suggests, are too big for high-accuracy modeling.
That is why we usually see great improvements in the theoretical
analyses but find them to be degraded or even completely lost in
practical applications.
In this paper, we propose a general approach to directly design

the operator of the FD method to reduce the numerical dispersions
for broadband seismic wave modeling. First, we construct an
objective function to evaluate the accuracy of the optimized FD
operator. Then, we try to select a proper error limitation. Next,
we build three criteria that the optimized FD operators should obey.
Finally, we apply the simulated annealing algorithm (Kirkpatrick
et al., 1983) to search for the operator that best satisfies the con-
straints from the objective function and the three criteria. These four
steps ensure that the final accuracy improvement is stable and sig-
nificant. The error limitation selected is 0.0001, which is the smal-
lest one in the literature and leads to a perfect agreement between
theoretical analyses and numerical experiments.

OPTIMIZATION SCHEME OF THE FD OPERATOR

The conventional FD operator for the second-order spatial differ-
entiation of function fðxÞ is basically a truncated Taylor series at
x ¼ 0 as follows (Fornberg, 1998; Chu and Stoffa, 2012):

∂2f
∂x2

≈
1

Δ2

XN∕2

n¼−N∕2
an

�
−

2

n2
cosðnπÞ

�
fn; (1)

where the even number N is the order, Δ is the uniform interval
along x, fn ¼ fðnΔÞ, and an is the constant coefficient defined
by the binomial coefficient formula

an ¼
�

N
N
2
þ n

�
∕
�
N
N
2

�
: (2)

We can reduce the numerical dispersions by using optimized con-
stant coefficients of equation 1 without any other changes to the
implementation of the FD method. Most previous works (e.g., Zhou
and Greenhalgh, 1992; Igel et al., 1995; Chu and Stoffa, 2012) hope
to design a proper window wn to obtain the optimized FD operators,
which can be generalized to the following form:

∂2f
∂x2

≈
1

Δ2

XN∕2

n¼−N∕2
wn

�
−

2

n2
cosðnπÞ

�
fn: (3)

The main drawback of this kind of method is that these windows
are often difficult to determine due to some control parameters in-
volved. In addition, as some specific functions, these windows are
usually not flexible enough to improve the accuracy significantly.
In fact, we can directly search for the final form of the optimized

FD operator. That is, the window wn is combined with all the other
parts in equation 3 as follows:

∂2f
∂x2

≈
1

Δ2

XN∕2

n¼−N∕2
bnfn; (4)

where bn are our coefficients to be optimized and are the final form
used in implementations. Our next work is to determine bn using an
optimization scheme.

In this paper, we directly optimize the coefficients by examining
the peak absolute error between the optimized FD operator in the
wavenumber domain and the analytical wavenumber, and we apply
the simulated annealing algorithm (Kirkpatrick et al., 1983) to
optimize the following objective function:

max
0≤kx≤kmax

x

���� − k2xΔ2 −
XN∕2

n¼−N∕2
bn cosðnkxΔÞ

���� ≤ T; (5)

where kx is the analytical wavenumber corresponding to the spatial
derivative ∂2∕∂x2, kmax

x is the maximum accurate wavenumber
range that the optimized FD operator can cover, and T is the max-
imum tolerant threshold (or error limitation). The simulated anneal-
ing algorithm allows more flexibility in solving the objective
function than the least-squares approach.
However, there are N þ 1 coefficients in our optimized FD

operator (i.e., b−N∕2 to bN∕2), which is a fairly large number for
the simulated annealing algorithm to handle. To reduce the optimi-
zation effort, we set up three criteria according to the theories of
sinc interpolation (Chu and Stoffa, 2012) and finite impulse re-
sponse (Oppenheim et al., 1999): (1) the operator is symmetric
and the coefficients should be real numbers, that is, bn ∈ R and
b−n ¼ bn; (2) the total energy of the optimized FD operator should
be zero; that is,

PN∕2
n¼−N∕2 bn ¼ 0; and (3) the coefficients should

have an amplitude of damped oscillation away from the center
position (n ¼ 0); that is, jbnj > jbnþ1j and bnbnþ1 < 0 for
n ¼ 1; 2; · · · ; N∕2. Rules 1 and 2 reduce the actual number of
the coefficients to be only N∕2, because b0 ¼ 2

PN∕2
n¼1 bn. Thus,

we can optimize the whole operator by purely determining b1 to
bN∕2. Rule 3 greatly decreases the search scope and makes the si-
mulated annealing algorithm affordable. In fact, the original coeffi-
cients of the conventional FD operators also obey these three
criteria. This indicates that these three criteria are reasonable for
general FD operators.
A proper error threshold is essential to the success of optimiza-

tion (Zhang and Yao, 2012). For an error limitation that is too small
(e.g., 0.00001), it is hard to gain a much wider wavenumber cover-
age. This means that the optimized FD operator gives few, if any,
improvements on reducing numerical dispersions. For an error lim-
itation that is too big (e.g., 0.0003 to 0.03 as Holberg [1987] sug-
gests), we can easily cover a much wider wavenumber range;
unfortunately, the numerical experiments would show major con-
flict with the theoretical analyses over the absolute error. That is,
numerical dispersions would boost and significantly deviate from
the accurate waveforms, especially for a large travel time or dis-
tance. This means we could not purely pursue wider coverage
by arbitrarily relaxing the error limitation. As a reasonable trade-
off, after analyzing many numerical experiments, we select the tol-
erant threshold to be T ¼ 0.0001, which is the smallest one shown
in the literature. As shown later, this error limitation leads to an
almost-perfect agreement on the coverage of accurate wavenumbers
between the theoretical analyses and the numerical experiments.
For a low-order FD operator, the coefficients are too few to im-

prove the accuracy. For a high-order FD operator, the coefficients
are too many to be determined simultaneously. More importantly,
introducing much higher orders in the optimized FD operator would
not significantly increase the accuracy but would greatly increase
the computational cost. Therefore, we only list the optimized coef-
ficients of the fourth- to sixteenth-order FD methods in Table 1.
Fortunately, these optimized FD operators, especially the optimized
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eighth- to sixteenth-order FD operators, are feasible for many prac-
tical applications.

ABSOLUTE-ERROR ANALYSES

We perform theoretical accuracy analyses of the conventional and
optimized FD operators by comparing their absolute errors. For the
stability analyses, please refer to Holberg (1987). Figure 1 shows
the absolute errors between the FD operators in the wavenumber
domain and the analytical wavenumber. Obviously, the optimized
eighth-order FD operator has much higher accuracy than the con-
ventional eighth-order FD operator. In addition, the accuracy of the
optimized eighth-order FD operator even reaches that of the con-
ventional twelfth-order FD operator because their absolute-error
curves share almost the same position in Figure 1a. Besides, the
accuracy of the optimized twelfth-order FD operator is much greater
than that of the conventional twelfth-order FD operator and even
reaches that of the conventional twenty-fourth-order FD operator.
The absolute-error curves of the conventional FD operators are

always close to zero positions and gradually increase with the
increasing wavenumbers, as shown in Figure 1b. However, the ab-
solute-error curves of the optimized FD operators behave quite dif-
ferently from those of the conventional FD operators: they vibrate
several times within a fixed error limitation and finally rush out of
the error limitation at a much higher wavenumber. Although there
are some deviations from zero positions for the absolute-error
curves of the optimized FD operators, the maximum deviation is
always within a quite narrow range of [−0.0001, 0.0001]. This
means our optimized coefficients, below a given tolerable threshold,
are effective in achieving a much wider accurate wavenumber range
and would greatly reduce the numerical dispersions.

IMPULSE RESPONSES

In this section, we illustrate the above absolute-error analyses
by impulse responses. A 2D homogeneous medium is defined
on a grid of 511 × 511 with grid spacing of 5 m. The velocity is
v ¼ 1500 m∕s, which is an extreme case in practical applications.
A point source is located at the center of the media. Figure 2 shows
the wavefield snapshots at 1.5 s. The dominant frequency of a
Ricker wavelet is 40 Hz for Figure 2a and 50 Hz for Figure 2b.
Obviously, the optimized eighth-order FD methods show much

better results, i.e., fewer numerical dispersions, compared with the
conventional eighth-order FD method. The results obtained by the
optimized eighth-order FD method are quite similar to those ob-
tained by the conventional twelfth-order FD method, and the results

Table 1. Optimized coefficients of high-order FD operators.

Fourth order Sixth order Eighth order Tenth order Twelfth order Fourteenth order Sixteenth order

b0 −2.55567466 −2.81952122 −2.97399944 −3.05450492 −3.12108522 −3.16275980 −3.18543410
b1 1.37106192 1.57500756 1.70507669 1.77642739 1.83730507 1.87636137 1.89789462

b2 −0.09322459 −0.18267338 −0.25861812 −0.30779013 −0.35408741 −0.38612121 −0.40456799
b3 0.01742643 0.04577745 0.07115999 0.09988277 0.12263042 0.13676734

b4 −0.00523630 −0.01422784 −0.02817135 −0.04190565 −0.05150324
b5 0.00168305 0.00653900 0.01330243 0.01893502

b6 −0.00092547 −0.00344731 −0.00619345
b7 0.00055985 0.00159455

b8 −0.00020980

Only b0 to bN∕2 are shown because b−n ¼ bn for n ¼ 1; 2; · · · ; N∕2, where N is the order of the FD operator.
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Figure 1. Accuracy comparison between the conventional and op-
timized FD operators: (a) a global view of absolute error within
[−0.6, 0.1] and (b) a local view within [−0.0006, 0.0002]. The
FD operators are for the second derivative along the spatial direc-
tion. Curves denote the absolute errors between the FD operators in
the wavenumber domain and the analytical wavenumber. Thin solid
curves denote the conventional FD operators with numbers indicat-
ing the order. The bold curves denote the optimized high-order FD
operators. The optimized coefficients are shown in Table 1.
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obtained by the optimized twelfth-order FD method are quite simi-
lar to those obtained by the conventional twenty-fourth-order
FD method. Figure 2 indicates that the improvement after using
our optimization scheme is significant for the eighth- and the

twelfth-order FD method. Note that these accuracy analyses based
on numerical experiments show perfect agreement with the theore-
tical analyses in the previous section.

TEST ON MARMOUSI MODEL

To verify the capabilities of our optimized FD method, we test on
a modified Marmousi model, as shown in Figure 3a. For the con-
venience of an accuracy comparison, we take the waveforms gen-
erated by the conventional thirty-sixth-order FD method as
references, which are plotted as dashed curves. For each time win-
dow shown in Figure 3b to 3d, the waveforms generated by the con-
ventional twelfth-order FD method obviously deviate from the
references due to the numerical dispersions. In contrast, the conven-
tional twenty-fourth-order and optimized twelfth-order FD methods
obtain almost the same waveforms that are consistent with the
references. This indicates that our optimized FD method is much
better than the conventional FD method when using the same order.
In addition, our optimized twelfth-order FDmethod achieves almost
the same accuracy as the conventional twenty-fourth-order FD
method does. Again, we see that these accuracy analyses are con-
sistent with those accuracy analyses in the previous two sections.

DISCUSSIONS

Figure 4 shows a comparison of memory demand and computa-
tional cost among different methods. We assume that a 2D model
should have a fixed size; but the grid interval and grid number vary
according to the minimum requirements of avoiding numerical dis-
persions. Obviously, the optimized FD methods have much less
memory demand and computational cost compared with the
same-order and lower-order conventional FD methods. On the other
hand, the optimized FD methods have much less computational cost
and similar memory demand compared with the same-order and
higher-order conventional FD methods. That is, the optimized FD
methods achieve significant reductions simultaneously on two im-
portant aspects: memory demand and computational cost. The mag-
nitude of the reduction in the computational cost shown in Figure 4
is also correct for 3D models; however, the magnitude of the reduc-
tion in the memory demand would be much greater in 3D cases be-
cause the normalized ratios shown in Figure 4 would be squared.
Our optimized FD operators can also be used for seismic mod-

eling on a coarse grid. The only difference is to use a coarser grid
but lower frequency. Our approach of designing the FD operator is
simple, flexible, and powerful. It can be easily extended to other
related fields. The optimized coefficients are easy to use because
the optimized FD methods have exactly the same algorithm struc-
ture as the conventional FD methods. This means that very few
modifications of the existing code are required.
The staggered FD method (Virieux, 1984) has fewer numerical

dispersions compared with the same order conventional FDmethod.
The optimization scheme proposed here can be extended to the stag-
gered FD method to further reduce the numerical dispersions.
Additionally, this paper only concentrates on the FD discretization
of the second derivative along the spatial direction. As a general
approach of optimizing FD operators, our approach can be applied
to other orders of spatial derivatives to optimize more general equa-
tions rather than only wave equations. We should use high-order
time discretization (e.g., Li et al., 2012) rather than the conventional
second order to maintain the final accuracy and to increase the time
step. Of course, we can also apply our scheme to optimize the whole
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Figure 2. Impulse responses before and after using our optimiza-
tion scheme. A point source is located in the middle of the homo-
geneous media with v ¼ 1500 m∕s. The dominant frequency of the
Ricker wavelet is (a) 40 and (b) 50 Hz, respectively. Each subfigure
has four equivalent parts with the amplitude clipped at 5%. In (a),
the left-bottom, left-upper, and right-upper corners are generated by
the conventional eighth-, twelfth-, and sixteenth-order FD methods,
respectively, and the right-bottom corner is generated by the opti-
mized eighth-order FD method. In (b), the left-bottom, left-upper,
and right-upper corners are generated by the conventional twelfth-,
twenty-fourth-, and thirty-sixth-order FD methods, respectively,
and the right-bottom corner is generated by the optimized twelfth-
order FD method.
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wave equation by taking the time discretization into account (Etgen,
2007; Etgen and Brandsberg-Dahl, 2009).

CONCLUSIONS

We present an optimization scheme to reduce the numerical dis-
persions of high-order FD methods. We combine the taper window
that is popular in designing the optimized FD operator with the
other coefficients into a new group of coefficients that are ready
to be optimized; thus, we can directly determine the final optimized
coefficients by searching for the maximum coverage of accurate
wavenumbers below a given error threshold. We set up three criteria
to guarantee the success of optimization, which can be extended to
more general FD operators. We find that the selection of a proper
error threshold is essential for consistent accuracy between the the-
oretical analyses and the numerical experiments. We select the error
threshold to be 0.0001, which leads to a wide enough wavenumber
coverage as well as a good agreement of accuracy between the prac-
tical application and the error analyses.
Our optimized eighth-order FD method has the same accuracy as

the conventional twelfth-order FD method. This means we can save
one-third of memory demand and computational cost after using our
optimized eighth-order FD method. Our optimized twelfth-order
FD method has the same accuracy as the conventional twenty-
fourth-order FD method. This means we can save half of memory
demand and computational cost after using our optimized twelfth-
order FD method. For much higher orders, the accuracy improve-
ments are much more apparent. These optimized FD operators
enable us to handle much higher frequency components to explore
much smaller structures without the influence of long-standing nu-
merical dispersions.
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