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ABSTRACT

Most true-amplitude migration algorithms based on one-
way wave equations involve corrections of geometric
spreading and seismic Q attenuation. However, few papers
discuss the compensation of transmission losses (CTL)
based on one-way wave equations. Here, we present a meth-
od to compensate for transmission losses using one-way
wave propagators for a 2D case. The scheme is derived from
the Lippmann-Schwinger integral equation. The CTL
scheme is composed of a transmission term and a phase-shift
term. The transmission term compensates amplitudes while
the wave propagates through subsurfaces. The transmission
term is a function of the vertical wavenumbers of two adja-
cent heterogeneous screens. The phase-shift term is a Four-
ier finite-difference (FFD) propagator implemented in a
mixed domain via Fourier transform. The transmission term
can be flexibly incorporated into the conventional phase-
shift migration algorithm, i.e., FFD, at every depth step.
We analyze the effects of frequency, lateral velocity contrast,
and vertical velocity ratio on the accuracy of the presented
formulae. Numerical examples from a flat model and a fault
model with lateral velocity variations are presented to de-
monstrate the ability of the proposed scheme for compensa-
tion of transmission losses.

INTRODUCTION

Wavenumber-domain wavefield extrapolation based on the one-
way wave equation (Claerbout, 1985) is a powerful tool for accurate
imaging of reflectors in complex geologic structures. Although one-
way wave equations can provide accurate kinematic information
(e.g., phases), they cannot treat the dynamic information (e.g.,
amplitudes) well. Several factors, such as geometric spreading,

seismic Q-attenuation, and transmission losses, can prevent one-
way wave migration algorithms from producing true-amplitude.
Most current true-amplitude migration algorithms include only

geometrical spreading (Zhang et al., 2003, 2005; Vivas and Pestana,
2010), and Q-compensation based on one-way wave-equation
migration has been discussed by many authors (Dai and West,
1994; Mittet et al., 1995; Valenciano et al., 2011; Wang, 2008;
Yu et al., 2002), but transmission losses during migration have been
paid little attention. Deng and McMechan (2007) presented a two-
pass recursive algorithm to compensate for transmission losses
using the framework of full-wave prestack reverse time migration
(RTM) (Chang and McMechan, 1986). However, the method is
challenged by huge computational cost mainly from the two-pass
RTM: the first pass extracts information required for the compensa-
tion, and the second pass applies the compensation for each major
reflector. Luo et al. (2005) use the transmission coefficient and
WKBJ approximation to correct the localized one-way beamlet
propagators. Although some authors (Xu et al., 1998; Zhang et al.,
2003) tried to compensate for transmission losses using post or pre-
stack migration, compensation for transmission losses (CTL) has
not yet been sufficiently accurate (Deng and McMechan, 2007).
In other applications, Massier et al. (1997) estimate transmission
operators for a subsurface region to remove shallow reverberations.
Frijlink and Wapenaar (2004) derive a correction method for trans-
mission losses based on energy-conservation principles and the
power reciprocity theorem for acoustic media. Based on energy-
conservation principles, Angus (2007) present amplitude correc-
tions for the problem of transmission losses using a narrow-angle
one-way elastic wave equation. However, the problem of transmis-
sion losses still has not been treated properly for one-way wave
propagators.
Here, we first derived one-way propagators coupled with trans-

mission coefficients starting from the Lippmann-Schwinger integral
equation. Generally, conventional one-way propagators without the
CTL consider amplitude behavior only for one interface boundary
at depth z, making it difficult for these methods to fully account for
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transmission losses. The proposed method in this paper considers
transmission losses for a given slab with two screens. The first
screen is the same as in conventional methods at depth z, and the
second screen is immediately below the first one at depth zþ Δz,
allowing us to treat transmission phenomena naturally. The com-
pensation scheme in this paper is composed of a compensation term
(transmission coefficient) multiplied by a Fourier finite-difference
(FFD) one-way wave propagator (Ristow and Rühl, 1994). The
transmission coefficient is a function of the vertical wavenumbers
of two adjacent heterogeneous screens, and the proposed scheme is
perfectly suited to the FFD method. The transmission compensation
is performed during the prestack depth migration in a natural way,
which makes the compensation flexible and efficient. Comparing
with the theoretical transmission coefficient, we examine the com-
putational accuracy of our method for several cases, involving fre-
quency, lateral velocity contrast, and vertical velocity ratio, and
frequency dependence. Numerical results from a flat model and
a fault model with lateral velocity variations suggest that the scheme
behaves well for these cases.

THEORY

For one-way wave equations, a medium can be sliced into
heterogeneous slabs (see Figure 1) perpendicular to the preferred
propagation direction along the vertical z-axis. A heterogeneous
slab is defined byΩ with the top interface Γ1 at depth z1, the bottom
interface Γ2 at depth z2, and thickness Δz ¼ z2 − z1. The velocity
distribution in the slab is denoted by vðrÞ, where r is the positional
vector. We assume the wave propagates along the z-axis, crossing
the slab from the upper boundary Γ1 to the lower boundary Γ2.
We start with the scalar Helmholtz equation for a time-harmonic

wavefield uðrÞ in a constant-density medium

∇2uðrÞ þ k2uðrÞ ¼ 0; (1)

where the wavenumber k ¼ ω∕vðrÞ, and r ¼ ðx; zÞ represents the
observation point located at the boundary Γ2 of any given slab. Note
that we neglect the source term, which can be considered as the
initial condition. The total pressure wavefield uðrÞ at location r ∈
Ω is composed of two scattered fields

uðrÞ ¼ us1ðrÞ þ us2ðrÞ: (2)

The scattered field us1ðrÞ is attributable to the closed boundary struc-
ture, Γ ¼ Γ1 þ Γ2 þ Γ−∞ þ Γ∞, and satisfies the boundary integral
equation

us1ðrÞ ¼
Z
Γ

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0; (3)

where ∂∕∂n denotes differentiation with respect to the outward nor-
mal of the boundary Γ. The scattered field us2ðrÞ is arising from the
volume heterogeneities within the slab and satisfies the Lipmann-
Schwinger integral equation

us2ðrÞ ¼ k20

Z
Ω
Oðr 0Þuðr 0ÞGðr; r 0Þdr 0; (4)

where k0 ¼ ω∕v0 is the reference wavenumber associated with a
chosen reference velocity v0, OðrÞ ¼ n2ðrÞ − 1 is the relative slow-
ness perturbation with acoustic refractive index nðrÞ ¼ v0∕vðrÞ,
and r 0 ¼ ðx 0; z 0Þ denotes the scattering point locating at the bound-
ary Γ1 in equation 3 and in the volume of the slab in equation 4.
These Kirchhoff-Helmholtz integral representation formulas are

derived using the Green’s functionGðr; r 0Þ in the background med-
ium; that is,Gðr; r 0Þ ¼ iHð1Þ

0 ðk0jr − r 0jÞ∕4 for 2D problems, where
the complex unit i ¼ ffiffiffiffiffiffi

−1
p

and Hð1Þ
0 is the Hankel function of the

first kind and of zeroth order. Substituting equations 3 and 4 into
equation 2, we obtain the following generalized Lippmann-
Schwinger integral equation

Z
Γ

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0

þ k20

Z
Ω
Oðr 0Þuðr 0ÞGðr; r 0Þdr 0

¼
� uðrÞ r ∈ Ω

CðrÞuðrÞ r ∈ Γ

0 r ∈= Ω̄

; (5)

for all r 0 ∈ Ω̄ ¼ Ωþ Γ, where the coefficient CðrÞ ¼ 1∕2 for a flat
Γ. Equation 5 is a wave integral equation that is equivalent to the
Helmholtz equation 1 and describes the two-way wave propaga-
tions in a heterogeneous medium (Fu, 2003).
The closed boundary Γ is composed of the top boundary Γ1, the

bottom boundary Γ2, the left boundary Γ−∞, and the right boundary
Γ∞. Thus, the right-hand side of equation 3 can be rewritten as

Figure 1. The geometry of a heterogeneous slab. The slab Ω is
bounded by the top boundary Γ1 at depth z1, the bottom boundary
Γ2 at depth z2, the left boundary Γ−∞ and the right boundary Γ∞.
The point r is the observation point, while r 0 denotes the scattering
point.
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Z
Γ

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0

¼
Z
Γ1þΓ2

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0

þ
Z
Γ−∞

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0

þ
Z
Γ∞

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0: (6)

For convenience, let qðrÞ ¼ ∂uðrÞ∕∂n indicate the acoustic pres-
sure gradient. For 2D problems, the plane-wave representation of
the Hankel function in a homogeneous medium is given by

Hð1Þ
0 ðk0jr − r 0jÞ ¼ 1

π

Z
∞

−∞
k−1z1 exp½ikz1ðz − z 0Þ þ ikxðx − x 0Þ�dkx

¼ 1

π

Z
∞

−∞
k−1z1 expðikz1ΔzÞ expð−ikxx 0Þ

expðikxxÞdkx; (7)

where kz1 is the vertical wavenumber at boundary Γ1, and Δz is
the thickness of the slab. Applying equation 7 to the integrands
in equation 6, we obtain

Z
Γ1

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0

¼ 1

4π

Z
∞

−∞

�
ik−1z1 qðkx; z1Þ þ uðkx; z1Þ

�

expðikz1ΔzÞ expðikxxÞdkx (8)

and

Z
Γ2

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0

¼ 1

4π

Z
∞

−∞
ik−1z1 qðkx; z2Þ expðikxxÞdkx: (9)

Because the boundaries Γ−∞ and Γ∞ tend to �∞ along the x-axis
direction, the slab Ω becomes unbounded and extends infinitely
along the x-axis direction. In this case, the Sommerfeld boundary
condition will be automatically satisfied because of the integral
representation of radiating solutions. Thus, the boundary integrals
on Γ−∞ and Γ∞ become zero, given by

Z
Γ−∞

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0 → 0; (10)

and

Z
Γ∞

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0 → 0. (11)

Substituting equation 7 into the volume integral term in equation 5,
and using the rectangle rule to calculate the integration over z
(i.e.,∫ b

afðzÞdz ≈ fðaÞðb − aÞ), we have

k20

Z
Ω
Oðr 0Þuðr 0ÞGðr; r 0Þdr 0

¼ k0
4π

Z
∞

−∞
k−1z1 ½Fðkx; z1Þ expðikz1ΔzÞ�

expðikxxÞdkx; (12)

where Fðkx; z1Þ represents the Fourier transform of the velocity-
weighted wavefield FðrÞ ¼ ik0ΔzOðrÞuðrÞ. For detailed derivation
of equations 8, 9, and 12, please see appendix A. Equation 12 is
actually the Born approximation applied to the slab. It requires that
the slab be thin enough with respect to the wavelength of incident
waves to avoid large numerical errors while applying the rectangle
rule. Substituting equations 8, 9, 10, 11, and 12 into equation 5 and
noting that each inner integral in equation 8, 9, and 12 is a Fourier
transform, we obtain a wavenumber-domain wave equation

kz1uðkx; z2Þ − iqðkx; z2Þ ¼ ½kz1uðkx; z1Þ þ iqðkx; z1Þ
þ k0Fðkx; z1Þ� expðikz1ΔzÞ: (13)

Equation 13 describes the one-way wave propagation in a hetero-
geneous slab between Γ1 and Γ2.
In exploration geophysics, we measure the pressure wavefield

uðrÞ, but not the pressure gradient qðrÞ. One possible way to drop
the pressure gradient qðrÞ at the slab entrance Γ1 is to choose Γ1 as
an acoustically soft boundary (Dirichlet boundary condition).
Dropping the pressure gradient qðrÞ means multiple reflections
and transmissions are neglected, which leads to a single scattering
approximation. The other way is to build a boundary integral equa-
tion at the boundary Γ1. Here, we build a boundary integral equation
given by

1

2
uðrÞ −

Z
Γ1

�
Gðr; r 0Þ ∂uðr 0Þ

∂n
− uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0 ¼ 0; r; r 0 ∈ Γ1:

(14)

Expressing equation 14 in the same way as equation 9, we have

iqðkx; z1Þ ¼ kz1uðkx; zÞ: (15)

Substituting equation 15 into equation 13 leads to

kz1uðkx; z2Þ − iqðkx; z2Þ ¼ ½2kz1uðkx; zÞ þ k0Fðkx; zÞ�
expðikz1ΔzÞ: (16)

To account for transmission loss at Γ2 in a natural manner, we
need to build a boundary integral equation at the bottom of the slab
given by

1

2
uðrÞ −

Z
Γ2

�
Gðr; r 0Þqðr 0Þ þ uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0 ¼ 0; r; r 0 ∈ Γ2:

(17)

Applying the plane-wave representation of the Hankel function to
equation 17 results in

iqðkx; z2Þ ¼ −kz2uðkx; z2Þ; (18)

where kz2 is the wavenumber related to the medium immediately
below Γ2. Substituting equation 18 into equation 16 gives
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uðkx; z2Þ ¼
2kz1

kz1 þ kz2
½uðkx; z1Þ þ

k0
kz1

Fðkx; z1Þ� expðikz1ΔzÞ:
(19)

Equation 19 is a one-way downward propagator under the single-
scattering approximation that accounts for the accumulated effect
on wave amplitudes and phases of forward scattering by volume
heterogeneities inside the slab and the transmissions between
adjoining slabs.
Equation 19 can be written in a generalized form as

uðkx; zþ ΔzÞ ¼ Tðkz1; kz2; zÞE½uðkx; zÞ�; (20)

where

Tðkz1; kz2Þ ¼
2kz1

kz1 þ kz2
; (21)

is the transmission coefficient at a given depth z, and the extrapola-
tion operator

E½uðkx; zÞ� ¼ ½uðkx; z1Þ þ
k0
kz1

Fðkx; z1Þ� expðikz1ΔzÞ; (22)

is the FFD propagator (Ristow and Rühl, 1994). The vertical wa-
venumbers kz1 and kz2, dependent on the space vector r, are calcu-
lated by equation 24 below. The implementation of Fðkx; z1Þ
requires a deconvolution in the wavenumber domain. A regular
way to implement Fðkx; z1Þ is to use the finite-difference method
in the space domain, which is equivalent to the FFD method.
From equation 20, the proposed one-way propagator is composed

of two terms: transmission-coefficient-compensating amplitudes,
and conventional FFD propagator governing amplitudes and
phases. Consequently, the algorithm structure might allow the com-
pensation term (equation 21) to be incorporated into other phase-
shift operators in the mixed domain, e.g., split-step Fourier method
(Stoffa et al., 1990) for media with a weak lateral velocity contrast, a
generalized screen propagator (de Hoop et al., 2000), or even
amplitude-preserving one-way propagators (Zhang et al., 2005;
Vivas and Pestana, 2010). However, this needs to be verified in the
future, for it is not the focus of this paper.
The compensation scheme of equation 21 can be easily extended

to 3D cases. For either 2D or 3D, transmission coefficient is a func-
tion of the two vertical wavenumbers kz1 and kz2 corresponding to
two adjacent slabs at depths z1 and z2. The calculation of the vertical
wavenumbers coincides with the algorithm structure of the conven-
tional one-way method.

RELATIONSHIP WITH PREVIOUS WORK

Deng and McMechan (2007) explicitly presented a two-pass re-
cursive algorithm to compensate for transmission losses. Because
they implemented their scheme using a prestack RTM (Chang
and McMechan, 1986), their method needed two steps to compen-
sate for transmission losses. The first step is to obtain information
required for the compensation, e.g., reflection coefficients obtained
from a division of receiver and source wavefields, the incident
angle, and the velocity ratio, all of which requires performing pre-
stack RTM. The second pass is to compensate for transmission

losses via performing the prestack RTM once more. Thus, their
method was challenged by huge computational cost.
Applying the dispersion relationship kz1 ¼ ω

v1
cos θ1 and kz2 ¼

ω
v2

cos θ2 (Claerbout, 1985) to equation 21, we obtain the same for-
mula as Deng and McMechan (2007):

T ¼ 2v2 cos θ1
v2 cos θ1 þ v1 cos θ2

¼ 2v2∕v1 cos θ1
v2∕v1 cos θ1 þ cos θ2

;

(23)

where θ and v denote the propagation angle and velocity of the
media, and subscripts 1 and 2 mean the two adjoining heteroge-
neous screens. Thus, the transmission coefficient calculated by our
scheme in the wavenumber domain is equivalent to the theoretical
one. The calculation, however, may suffer numerical errors
resulted from the numerical implementation of two vertical wave-
numbers corresponding to two adjacent screens at depth z1 and z2.

IMPLEMENTATION

The compensation scheme can be easily incorporated into con-
ventional phase-shift modeling or migration algorithms. Three steps
are required to implement the FFD: (1) a phase shift in the wave-
number domain, (2) a phase correction in the space domain, and
(3) a finite-difference correction in the space domain. The CTL term
can be applied after the first step of implementing the FFD.
Because a slab involves upper and lower screens at depths z1 and

z2, only one reference velocity is employed during wavefield extra-
polation. This is different from the regular way. To make the FFD
algorithm stable, we choose the minimum velocity as the reference
velocity. The approximate cascaded vertical wavenumber for the
FFD propagator can be expressed as

kzðrÞ ¼ kz0 þ ω

�
1

vðrÞ −
1

v0

�
−

bk2x
1 − ak2x

; (24)

for 2D cases, where kz0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2∕v20 − k2x

p
, ω is the angular fre-

quency, a ¼ 0.25ðv20 þ v0vþ v2Þ∕ω2 and b ¼ 0.5ðv − v0Þ∕ω.
The horizontal wavenumber kx is discretized as kx ¼
i2π∕ðNxdxÞ, i ¼ 1; 2; · · · ; Nx, Nx is the sampling number, and
dx is the sampling interval in the x-direction.
Because the circular frequency ω cannot be removed directly, the

compensation term (equation 21) is dependent on frequency. The
calculation of the vertical wavenumber involves the lateral velocity
contrast. The accuracy of the transmission term (see equation 23) is
also related to the vertical velocity ratio of the two adjacent slabs.
Thus, we would evaluate the influences of the frequency, the lateral
velocity contrast, and the vertical velocity ratio of media, on the
accuracy of our method in the next section.

EXAMPLES

In this section, we investigate the dependence of accuracy of the
presented scheme on frequency, lateral velocity contrast and vertical
velocity ratio. To obtain valid values for parameters, e.g., velocity
contrast, we extract these parameters from the SEG/EAGE 2D salt
model. The thickness of a slab is 12.192 m.
Here, the lateral velocity contrast is defined as p ¼ v0∕v, where

v0 is the reference velocity, and v is the migration velocity in a het-
erogeneous slab. The vertical velocity ratio is defined as r ¼ v1∕v2,
where v1 and v2 are the reference velocities of the two adjoining
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slabs. The velocity contrast p ranges from 0.3 to 1, while the
velocity ratio r ranges from 0.8 to 1.2 approximately for the
SEG/EAGE 2D salt model.

Dependence on frequency

The presented scheme is dependent on the frequency, while the
theoretical coefficients are not frequency-dependent. Thus, it is ne-
cessary to examine the frequency characteristics of the transmission
coefficients calculated by equation 21. We first set v1 ¼ 2200 m∕s.
Reference velocities for the SEG/EAGE 2D salt model range
from 2000 m∕s to 2400 m∕s. In this example, we have p ¼ 1

and r ¼ 0.8.
Figure 2 compares the calculated transmission coefficients for

two frequencies, 5 Hz and 20 Hz, compared with the theoretical
coefficients at different frequencies. We investigated frequencies
of f ¼ 5 Hz, 20 Hz. We also computed the transmission coeffi-
cients for the frequencies of f ¼ 50 Hz, 80 Hz, and 100 Hz,
and found that the coefficients calculated with a frequency larger
than 20 Hz are the same as those calculated with a 20 Hz frequency.
The frequency-dependent transmission coefficient is consistent with
the theoretical ones for low- and high-frequency components at
small and intermediate incident angles. However, a small numerical
error arises at large incident angles (greater than 70°) for the low-
frequency components.

Dependence on lateral velocity contrast

The SEG/EAGE 2D salt model shows a large lateral velocity
contrast, ranging from 0.3 to 1. A small velocity contrast denotes
a strong lateral velocity variation and a large one denotes a weak
lateral velocity variation. To avoid the influence of frequency, we
use a high frequency f ¼ 20 Hz. Because the lateral velocity
contrast in the model varies between 0.4 and 0.6 mostly, we choose
p ¼ 0.4, 0.6, and 0.8, denoting strong, intermediate, and weak lat-
eral velocity contrasts, respectively.
Figure 3 shows comparisons of the calculated transmission

coefficients with the theoretical ones for a velocity ratio 0.8. They
coincide with each other for incident angles smaller than 50°; but for

a large incident angle (greater than 50°), numerical errors become
large. However, the errors disappear when p ¼ 1, i.e., no lateral
velocity contrast involved. This could result from the approximation
of the vertical wavenumber (see Figure 4) for a different velocity
contrast p for FFD propagator. In other words, the dispersion ac-
curacy of propagators has effect on the accuracy of the transmission
coefficients. However, the computational accuracy can be improved
further by using other one-way propagators with higher accuracy,
because they can provide more accurate information for dip angles
larger than 50°.

Dependence on vertical velocity ratio

The vertical velocity ratio ranges from 0.8 to 1.2 for the SEG/
EAGE 2D salt model. We take the case of a ratio smaller than
1one as an example. The ratio varies from 0.3 to 0.9, denoting large,
intermediate, and small velocity contrast in the depth direction. We
also take p ¼ 0.9 and f ¼ 20 Hz .
Figure 5 compares the coefficient calculated by equation 21 with

the theoretical coefficients for different velocity ratios. As observed
in above result, the present schemes behave well for small and

Figure 2. Comparison of the computed frequency-dependent trans-
mission coefficient with the theoretical one for different frequen-
cies. The lateral velocity contrast p ¼ 1, and the velocity ratio is
0.8.

Figure 3. Comparison of the transmission coefficient calculated by
equation 21 with the theoretical one for different lateral velocity
contrasts. The frequency is 20 Hz, and the velocity ratio is 0.8.

Figure 4. Comparison of the approximate vertical wavenumber for
different velocity contrasts with the theoretical one.
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intermediate incident angle (smaller than 50°). Large errors occur at
large incident angles, which is resulted from the approximation of
the vertical wavenumber.

Two simple models

We consider two simple models in a 2D medium: a horizontal
two-layer model shown in Figure 6a and a two-layer fault model
with lateral velocity variations shown in Figure 7a. Both models
are defined on a grid system of 1001 × 201 with a grid spacing
of 12 m × 5 m in the horizontal and vertical directions, respectively.
The velocities of the upper and lower layers are 2250 m∕s and
2000 m∕s. We synthesize a shot record to examine the accuracy
of our method. The source locates at the horizontal position 6 km.
The peak frequency is 15 Hz, and the time sampling interval is 4 ms.
To eliminate other factors that affect the transmission across

interfaces as much as possible, two receiver lines are placed above
and below the subsurface to receive the incident waves and the
transmitted waves, respectively. The transmission coefficient is
defined by the ratio of amplitudes of the transmitted waves and
the incident waves. The transmission coefficients calculated by
our CTL method are compared with those by the full-wave finite-
difference (FD) method and the one-way method without CTL.
Because reflections occur while waves propagate through the inter-
face using full-wave FD method, we pick the peak amplitudes of the
first arrivals of incident waves and transmitted waves. We use the
root-mean-square as the amplitudes of the incident waves and trans-
mitted waves for the one-way method.
Figure 6b compares the transmission coefficient calculated by the

one-way method with CTL (equation 21) with those calculated with
the full-wave FD method and the one-way method without CTL
(equation 22) for the flat model shown in Figure 6a. The shot is
located at horizontal position 6 km. The calculated amplitudes
by the one-way method without CTL show large errors compared
with that calculated by the full-wave FD method. This illustrates
that the conventional one-way method (Claerbout, 1985) cannot
provide the correct dynamic information of waves. In contrast,
the calculated amplitudes by our method match well with the results
of the full-wave FD method.

Figure 6. (a) A flat model with two layers. The triangles denote
receivers above and below the interface. (b) Comparison of the am-
plitudes calculated by the one-way method with CTL (thick solid
line) with the full-wave FD method (dash line) and the one-way
method without CTL (thin solid line) for the flat model.

Figure 7. (a) A fault model with two layers. The triangles denote
receivers above and below the interface. (b) Comparison of the am-
plitudes calculated by the one-way method with CTL (thick solid
line) with the full-wave FD method (dash line) and the one-way
method without CTL (thin solid line) for the fault model.

Figure 5. The transmission coefficients calculated with different
vertical velocity ratios, i.e., 0.3, 0.6, and 0.9. The solid line denotes
the theoretical transmission coefficient, while the dashed line
denotes the transmission coefficient calculated by equation 21.
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To show behavior of our correction method for a model of lateral
velocity variation, we consider the fault model shown in Figure 7a.
Figure 7b shows results of the one-way method with and without
CTL and the full-wave FD method for a single shot located at hor-
izontal position 6 km. As expected, the result by the conventional
one-way method shows large amplitude errors compared with that
of the full-wave FD method. Thus, the conventional one-way meth-
od does not treat the transmission losses properly. Our method has
taken CTL into account, so its result behaves well in comparison
with that of full-wave FD method. Approximately, 2% slight bias
of the transmission coefficient curves of our method relative to
those of the FD method occurs in Figures 6b and 7b, perhaps
the result of geometry spreading or other approximations.
In Figures 6b and 7b, amplitudes with CTL decrease obviously

when the distance is less than 2 km and more than 10 km approxi-
mately. This means the calculations of the transmission coefficients
are inaccurate. The incident angle at 2 km or 10 km is about 85°.
Thus, this does not affect the compensation scheme, because the
phases of one-way propagators are also inaccurate when the propa-
gation angle is beyond 85°.

CONCLUSIONS

We have presented a scheme to compensate for the transmission
losses based on the one-way wave propagator in the mixed domain.
The CTL scheme does not change the algorithm structure of the
conventional one-way migration algorithm, and the compensation
term can be flexibly incorporated into a FFD scheme. Compared
with the theoretical solutions, the presented scheme behaves well
in complex structures, e.g., strong lateral velocity contrast and steep
dip (up to 50°). Numerical examples from a horizontally layered
model and a fault model with lateral velocity variations show that
the conventional one-way method does not provide reliable ampli-
tudes as a result of transmission losses. Our method in contrast ac-
counts for transmission losses correctly as shown in comparison
with the result from the full-wave FD method. The proposed meth-
od can be extended to 3D cases easily, because the compensation
term is a simple function of vertical wavenumbers of two screens at
depths z1 and z2. The possibility of extending the formulas to other
one-way phase-shift algorithms will be investigated in the future.
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APPENDIX A

MATHEMATICAL DERIVATIONS

The Green’s function in a 2D case is given by

Gðr; r 0Þ ¼ i
4π

Z
∞

−∞
k−1z1 expðikz1ΔzÞ expð−ikxx 0Þ expðikxxÞdkx;

(A-1)

and its normal derivative can be expressed as

∂Gðr; r 0Þ
∂n

¼ −
1

4π

Z
∞

−∞
expðikz1ΔzÞ expð−ikxx 0Þ expðikxxÞdkx:

(A-2)

For the point r 0 located at the boundary Γ1, the microelement dr 0
can be written as dx 0. Thus, the boundary integral equation at Γ1

becomes

Z
Γ1

�
Gðr; r 0Þqðr 0Þ − uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0

¼ 1

4π

Z
∞

−∞
ik−1z1 expðikzΔzÞ expðikxxÞZ

∞

−∞
qðx 0; z1Þ expð−ikxx 0Þdx 0dkx

þ 1

4π

Z
∞

−∞
expðikz1ΔzÞ expðikxxÞZ

∞

−∞
uðx 0; z1Þ expð−ikxx 0Þdx 0dkx

¼ 1

4π

Z
∞

−∞

�
ik−1z qðkx; z1Þ þ uðkx; z1Þ

�

expðikz1ΔzÞ expðikxxÞdkx: (A-3)

Because ∂Gðr;r 0Þ
∂n ¼ ∂Gðr;r 0Þ

∂z
∂z
∂n ¼ 0 when r and r 0 ∈ Γ2, the boundary

integral equation at Γ2 becomes

Z
Γ2

�
Gðr; r 0Þqðr 0Þ − uðr 0Þ ∂Gðr; r 0Þ

∂n

�
dr 0

¼ 1

4π

Z
∞

−∞
ik−1z1 expðikz1ΔzÞ expðikxxÞZ

∞

−∞
qðx 0; zÞ expð−ikxx 0Þdx 0dkx

¼ 1

4π

Z
∞

−∞
ik−1z1 qðkx; z1Þ expðikz1ΔzÞ expðikxxÞdkx

¼ 1

4π

Z
∞

−∞
ik−1z1 qðkx; z2Þ expðikxxÞdkx; (A-4)

where qðkx; z2Þ ≈ qðkx; z1Þ expðikz1ΔzÞ. To calculate an integral
over a function fðxÞ on the interval ðz1; z2Þ numerically, the rectan-
gle rule is defined as

Z
z2

z1

fðxÞdx ≈ fðz1Þðz2 − z1Þ: (A-5)

The volume integration in equation 5 is given by

k20

Z
Ω
Oðr 0Þuðr 0Þdr 0 ¼ k0

4π

Z
x 0

1

iΔz
Gðr; r 0Þdx 0

Z
z 0
ik0ΔzOðr 0Þuðr 0Þdz 0: (A-6)

Applying equation A-5 and substituting equations A-1 and A-2 into
equation A-6, we obtain
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k20

Z
Ω
Oðr 0Þuðr 0Þdr 0 ¼ k0

Z
x 0

1

iΔz
Gðr; r 0ÞFðr 0ÞΔzdx 0

¼ k0
4π

Z
∞

−∞
expðikz1ΔzÞ expðikxxÞ

Z
∞

−∞
Fðx 0; z1Þ expð−ikxx 0Þdx 0dkx

¼ k0
4π

Z
∞

−∞
k−1z1 ½Fðkx; z1Þ expðikz1ΔzÞ� expðikxxÞdkx:

(A-7)
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