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ABSTRACT

The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs
as well as those of solar wind, is a very important parameter in space physics to study the transport of charged
energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is
necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition,
the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important
to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion
coefficient with adiabatic focusing. Based on Shalchi’s results, in this paper we provide a direct analytical formula
as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly
determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical
formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather
research. As applications of the direct method, we investigate the inherent relations between the parallel mean free
path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean
free paths with and without adiabatic focusing are also presented.
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1. INTRODUCTION

The propagation of cosmic rays in interplanetary space is one
of the fundamental problems of astrophysics and heliophysics.
It is the basic knowledge needed to study space weather. To
study the modulation of cosmic rays and the transport of solar
energetic particles (SEPs), a focused transport equation was ob-
tained (Parker 1963, 1965; Roelof 1969; Ng & Reames 1994).
It is very difficult to solve the focused transport equation ana-
lytically; consequently, numerical methods are usually adopted
(e.g., Ng & Wong 1979; Schlüter 1985; Ruffolo 1991; Zhang
et al. 2009; Dröge & Kartavykh 2009; He et al. 2011; Qin et al.
2011). To study the transport of charged energetic particles,
we must understand their diffusion mechanism. The diffusion
of cosmic rays in the direction parallel to a mean magnetic
field plays an important role in the transport processes (Jokipii
1966). Therefore, the parallel transport of charged energetic par-
ticles has been extensively studied (e.g., Dröge 2000; Teufel &
Schlickeiser 2002, 2003; Shalchi & Schlickeiser 2005; Shalchi
et al. 2006; He & Qin 2011; He et al. 2011). The parallel mean
free path λ‖,0 without adiabatic focusing is related to the pitch-
angle diffusion coefficient Dμμ (Jokipii 1966; Hasselmann &
Wibberenz 1968; Earl 1974) as

λ‖,0 = 3v

8

∫ +1

−1

(1 − μ2)2

Dμμ

dμ, (1)

and the radial mean free path can be defined as

λr,0 = λ‖,0 cos2 ψ, (2)

where ψ is the angle between the local magnetic field direction
and the radial direction. In the equation above, cos2 ψ can be
written as (Ng & Gleeson 1971)

cos2 ψ = V 2/(V 2 + Ω2r2 sin2 θ ), (3)

where V is the solar wind speed, Ω is the angular rotation velocity
of the Sun, and r and θ are the coordinates of the heliocentric
spherical polar coordinate system (r, θ, φ), i.e., r is the radial
distance from the center of the Sun, and θ is the colatitude,
which is measured from the rotation axis of the Sun.

The parallel mean free path of SEPs, which is determined
by the physical properties of SEPs as well as those of solar
wind, is a very important parameter in space physics to study
the transport of charged energetic particles in the heliosphere,
especially for space weather prediction. To accurately obtain the
parallel mean free path of SEPs for a solar event, one usually has
to fit time profiles of both flux and anisotropy between spacecraft
observations and numerical simulations of SEPs’ transport
processes through interplanetary space (e.g., Beeck et al. 1987;
Kallenrode 1993; Dröge & Kartavykh 2009). This method can
be called a simulation method. However, a reasonably good
fitting usually requires a number of simulations that demand
a large amount of calculation resources, so they are time-
consuming even with modern supercomputers. Alternatively,
He & Qin (2011) provided an analytical method to quickly
estimate the parallel mean free path of SEPs for impulsive SEP
events by fitting the anisotropy time profiles between spacecraft
observations with the approximate analytical formula

A(t) ≈ 3μ0e
−vt/3λ‖ . (4)

Usually, for example, in space weather practice, we usually
need to quickly estimate the parallel mean free path of SEPs to
predict their transport process and space-time evolution before
they arrive at the spacecraft or enter Earth’s orbit and damage
the electronic components on satellites and risk the health of the
astronauts working in space, and therefore it is necessary to find
a direct way to determine the parallel mean free path of SEPs.

In the solar system, the mean magnetic field is not constant,
and this spatially varying mean magnetic field causes the
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adiabatic focusing effect of charged particles (Roelof 1969; Earl
1976; Bieber & Burger 1990; Ruffolo 1995; Bieber et al. 2002;
Schlickeiser & Shalchi 2008). This effect will be taken into
account when we investigate the parallel diffusion coefficient of
SEPs from the focused transport equation, especially in the inner
heliosphere scenario, since that is where the nonuniformity of
the mean magnetic field structure may be important. Recently,
Shalchi (2011) presented an analytical description for the
parallel diffusion coefficient with adiabatic focusing. It is
possible to develop a direct analytical formula of the parallel
mean free path of SEPs with adiabatic focusing as a function
of parameters concerning the physical properties of SEPs and
solar wind.

In this paper, we provide a direct analytical method to
determine the parallel mean free path of SEPs with adiabatic
focusing. Based on this direct method, we present the inherent
relations between the parallel mean free path and various
parameters concerning the physical properties of SEPs and solar
wind. Comparisons of parallel mean free paths with and without
adiabatic focusing are also presented. We will first provide an
analytical description, as a function of spatial position and solar
wind speed, of adiabatic focusing length for spatial variations of
the mean Parker interplanetary magnetic field. In Section 3, we
present a direct analytical method for obtaining the parallel mean
free path of SEPs with adiabatic focusing. Based on the direct
method, Section 4 discusses the inherent relations between the
parallel mean free path and various parameters concerning the
physical properties of SEPs and solar wind. A summary of our
results will be provided in Section 5.

2. ADIABATIC FOCUSING LENGTH OF THE
PARKER MAGNETIC FIELD

In the heliosphere, the mean magnetic field is not constant;
rather, it is spatially varying. Therefore, the adiabatic focusing
effect for SEPs is generated. To investigate the parallel diffusion
of cosmic rays with adiabatic focusing, Shalchi (2011) used the
Fokker–Planck equation,

∂f

∂t
+ μv

∂f

∂z
+

v

2L
(1 − μ2)

∂f

∂μ
= ∂

∂μ

(
Dμμ

∂f

∂μ

)

+ D⊥

(
∂2f

∂x2
+

∂2f

∂y2

)
. (5)

In Equation (5), z is the coordinate along the mean magnetic field
line, μ is the particle pitch-angle cosine, t is the time, v is the
particle velocity, Dμμ is the pitch-angle diffusion coefficient,
D⊥ is the perpendicular diffusion coefficient, and L is the
adiabatic focusing length and is defined by

1

L(z)
= − 1

B(z)

∂B

∂z
, (6)

where B is the average magnetic field with direction z.
In this work, we consider the Archimedean spiral magnetic

field model originally suggested by Parker (1958). Some prop-
erties of the Parker magnetic field model have been verified by
observations (e.g., Smith et al. 1986; Forsyth et al. 1996). The
Parker spiral magnetic field model can be written as

Br = B0

r2
, (7)

Bθ = 0, (8)

Figure 1. Adiabatic focusing length vs. radial distance r with different
colatitudes θ and solar wind speeds V in km s−1.

and

Bφ = −B0Ω sin θ

rV
. (9)

Here V is the solar wind speed, Ω is the angular rotation velocity
of the Sun, and r and θ are the coordinates of the heliocentric
spherical polar coordinate system (r, θ, φ). The magnetic field
magnitude can easily be given as

B(z) = B0

r2

√
V 2 + Ω2r2 sin2 θ

V 2
. (10)

The spatial variation of the magnetic field magnitude along
direction z could be derived as

∂B
∂z

=
∂B
∂r

∂z
∂r

=
−B0(2V 2+Ω2r2 sin2 θ)
V r3

√
V 2+Ω2r2 sin2 θ

V
2

(
V 2+2Ω2r2 sin2 θ

V 2
√

V 2+Ω2r2 sin2 θ
+ Ωr sin θ+

√
V 2+Ω2r2 sin2 θ

V 2+Ω2r2 sin2 θ+Ωr sin θ
√

V 2+Ω2r2 sin2 θ

)

= −B0(2V 2+Ω2r2 sin2 θ)
r3(V 2+Ω2r2 sin2 θ) . (11)

By combining Equation (11) with Equations (6) and (10),
we can derive the analytical description of adiabatic focusing
length as

L(z) = r(V 2 + Ω2r2 sin2 θ )3/2

V (2V 2 + Ω2r2 sin2 θ )
, (12)

which is a function of the spatial position and the solar wind
speed. By using Equation (12), we can calculate the adiabatic
focusing length of the heliospheric magnetic field at any location
and with any solar wind speed throughout the interplanetary
space.

Figure 1 shows the adiabatic focusing length’s radial distance
(r) dependence with different colatitudes θ , which are measured
from the rotation axis of the Sun and solar wind speeds V in
km s−1. For every case in Figure 1, we can see that the adiabatic
focusing length monotonously increases with radial distance.
In addition, in the inner heliosphere, i.e., when r � 1 AU, the
adiabatic focusing length is very short. This indicates that the
adiabatic focusing effect is very important near the Sun. In the
outer heliosphere, e.g., when r = 10 AU, the adiabatic focusing
length is very long, which means that the adiabatic focusing
effect is not significant far away from the Sun.
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Figure 2. Adiabatic focusing length vs. colatitude θ with different radial
distances r and solar wind speeds V in km s−1.

Figure 2 displays the dependence of adiabatic focusing length
on colatitude θ with different radial distances r and solar wind
speeds V in km s−1. In Figure 2, we can see that the adiabatic
focusing length increases with the colatitude until θ = 90◦
where it peaks, and then it decreases with the colatitude θ .
Therefore, this means that the adiabatic focusing effect near
the solar equatorial plane is relatively weak for every case with
different conditions of radial distance r and solar wind speed V.

Figure 3 depicts the adiabatic focusing length’s solar wind
speed (V) dependence with different radial distances r and
colatitudes θ . As we can see in Figure 3, the adiabatic focusing
length monotonously decreases for every case with the solar
wind speed V. Therefore, the significance of the adiabatic
focusing effect increases with increasing solar wind speed.

3. DIRECT METHOD TO DETERMINE THE PARALLEL
MEAN FREE PATH OF SEPs

Shalchi (2011) used an isotropic form of the pitch-angle
diffusion coefficient as (Shalchi et al. 2009)

Dμμ = Diso(1 − μ2), (13)

where Diso can be written as

Diso = π

q
C(q)

v

lslab
Rq−2

(
δB

B

)q+1

. (14)

In Equation (14), q is the inertial range spectral index, C(q) is
the normalization function, v is the particle velocity, lslab is the
slab bend-over scale, R is the dimensionless rigidity of particles,
δB is the strength of the turbulent magnetic field, and B is the
strength of the mean magnetic field. C(q) could be written as

C(q) = Γ
(

q

2

)
2
√

πΓ
(

q

2 − 1
2

) , (15)

and R may be expressed by the unperturbed Larmor radius RL
of the particle and the slab bend-over scale as

R = RL

lslab
. (16)

For Equation (5), with the isotropic form of the pitch-angle
diffusion coefficient (13), Shalchi (2011) derived an exact

Figure 3. Adiabatic focusing length vs. solar wind speed V in km s−1 with
different radial distances r and colatitudes θ .

formula for the parallel mean free path with the adiabatic
focusing effect as

λ‖ = 3L3

λ2
‖,0

[
λ‖,0
L

− tanh

(
λ‖,0
L

)]
. (17)

In Equation (17), a constant adiabatic focusing length L was
assumed. In reality, however, the spatial dependence of the
adiabatic focusing length should be specified as Equation (12).
By combining Equation (1) with Equation (13), we can easily
derive

λ‖,0 = v

2Diso
. (18)

In the heliosphere, by combining Equation (17) with
Equations (12) and (18), we can obtain the parallel mean free
path of SEPs with adiabatic focusing for SEP events. This
method can be called a direct method. When using this method,
we only need some observable parameters concerning the physi-
cal properties of SEPs and solar wind. Therefore, we can quickly
determine the parallel mean free path of SEPs without adopt-
ing the time-consuming numerical simulations of the particle
transport processes.

For an arbitrary pitch-angle diffusion coefficient and weak
focusing, Shalchi (2011) provided an approximate formula of
the parallel mean free path of SEPs with adiabatic focusing,
which has second-order precision in the focusing strength

λ‖ = λ‖,0 +
l2λ‖,0
L2

+
6

L2

∫ +1

−1
μ

[
1

3
F 3(μ) − lF 2(μ)

]
dμ, (19)

where F (μ) is

F (μ) = v

4

∫ μ

−1

1 − ν2

Dνν

dν (20)

and l is

l = F (μ = 1) = v

4

∫ +1

−1

1 − ν2

Dνν

dν. (21)

For a specific form of Dμμ, by combining Equation (19)
with Equations (1), (12), (20), and (21), we can approximately
calculate the parallel mean free path of SEPs with weak adia-
batic focusing for an arbitrary pitch-angle diffusion coefficient.
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Figure 4. Parallel mean free path λ‖ of SEPs as a function of the radial
distance r.

As an example, Shalchi (2011) considered the quasilinear (QLT;
Jokipii 1966) form of the pitch-angle diffusion coefficient as

Dμμ = DQLT(1 − μ2)|μ|q−1 (22)

with

DQLT = πC(q)
v

lslab
Rq−2

(
δB

B

)2

, (23)

where the parameters used are explained in the text after
Equation (14). For Equation (5), with the QLT form of the
pitch-angle diffusion coefficient (22), Shalchi (2011) deduced a
formula for the parallel mean free path with adiabatic focusing
as

λ‖ = λ‖,0 − 2(5 − 2q)(4 − q)2λ3
‖,0

27(8 − 3q)L2
. (24)

By combining Equation (1) with Equation (22), we can derive

λ‖,0 = 3v

2DQLT(2 − q)(4 − q)
. (25)

By combining Equation (24) with Equations (12) and (25), we
can approximately estimate the parallel mean free path of SEPs
with weak adiabatic focusing for the QLT form of the pitch-
angle diffusion coefficient.

In the following section, some applications of the direct
method will be presented. We will visualize the results of the
parallel mean free path with adiabatic focusing for both isotropic
and QLT forms of the pitch-angle diffusion coefficient. For
comparison, we will also visualize the parallel mean free path
without adiabatic focusing for each case.

4. APPLICATIONS OF THE DIRECT METHOD

In the following figures, the solid and dotted lines indicate
the parallel mean free paths of SEPs with and without adiabatic
focusing, respectively, for the isotropic form of the pitch-
angle diffusion coefficient. The dashed and dash-dotted curves
indicate the parallel mean free paths of SEPs with and without
adiabatic focusing, respectively, for the QLT form of the pitch-
angle diffusion coefficient. In addition, we typically use the
inertial range spectral index q = 5/3 that corresponds to the
value suggested by Kolmogorov (1941) in pitch-angle diffusion
coefficients. In this work, we present the results of the parallel
mean free path of protons.

Figure 5. Radial mean free path λr of SEPs as a function of the radial
distance r.

Figure 4 shows the parallel mean free path of SEPs as a
function of the radial distance from the center of the Sun in
the heliosphere. We typically set the colatitude θ = 90◦, the
solar wind speed V = 400 km s−1, the turbulence strength
δB/B = 0.4, and the slab bend-over scale lslab = 0.03 AU for
50 MeV protons. In Figure 4, we can see that the parallel mean
free path for each case increases with increasing radial distance
through the entire range from 0.05 to 50 AU. The difference
between parallel mean free paths with and without adiabatic
focusing is significant for both isotropic and QLT forms of the
pitch-angle diffusion coefficient in the inner heliosphere, i.e.,
when radial distance r � 1 AU. The parallel mean free path
without adiabatic focusing is larger than that with adiabatic
focusing for both isotropic and QLT forms of the pitch-angle
diffusion coefficient. However, this difference decreases with
increasing radial distance. When r � 1 AU, the difference is
negligible. In addition, with the same physical conditions, the
parallel mean free path obtained with the QLT form of the pitch-
angle diffusion coefficient is larger than that obtained with the
isotropic form.

The radial dependence of the radial mean free path is a
very interesting topic in the community, and it was usually
modeled by a power law λr (r) ∼ rb in previous investigations
of the transport of SEPs through interplanetary space. Figure 5
displays the radial mean free path of SEPs as a function of
the radial distance from the center of the Sun. The physical
parameters we set are the same as Figure 4. When radial distance
r � 1 AU, we can see that the scenario in Figure 5 is similar to
that in Figure 4. However, when r � 1 AU, the radial mean free
path either with or without adiabatic focusing decreases with
increasing radial distance for both isotropic and QLT forms of
the pitch-angle diffusion coefficient. For the QLT form of the
pitch-angle diffusion coefficient, the radial mean free path with
adiabatic focusing is significantly reduced near the Sun, i.e.,
when the radial distance r ∼ 0.05 AU in the figure. Generally
speaking, the results of the radial dependence of the parallel and
radial mean free paths presented in Figures 4 and 5, respectively,
are consistent with the results from observations in previous
studies (e.g., Zwickl & Webber 1977; Hamilton 1977; Goeman
& Webber 1983; Beeck et al. 1987).

Figure 6 depicts the parallel mean free path of SEPs as
a function of the colatitude θ . We typically set the radial
distance r = 1 AU, the solar wind speed V = 400 km s−1,
the turbulence strength δB/B = 0.4, and the slab bend-over
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Figure 6. Parallel mean free path λ‖ of SEPs as a function of the colatitude θ .

Figure 7. Parallel mean free path λ‖ of SEPs as a function of the solar wind
speed V.

scale lslab = 0.03 AU for 50 MeV protons. For both isotropic
and QLT forms of the pitch-angle diffusion coefficient, we can
see that the parallel mean free path without adiabatic focusing
is larger than that with adiabatic focusing across the entire
range from 0 to 180◦. The parallel mean free path obtained
with the QLT form of the pitch-angle diffusion coefficient is
larger than that obtained with the isotropic form. Additionally,
for both isotropic and QLT forms, the parallel mean free path
without adiabatic focusing decreases with the colatitude until
θ = 90◦ where it minimizes and then increases with the
colatitude θ . However, the parallel mean free path with adiabatic
focusing does not vary significantly with the colatitude θ for both
isotropic and QLT forms of the pitch-angle diffusion coefficient.

Figure 7 presents the parallel mean free path of SEPs as a
function of the solar wind speed. We typically set the radial
distance r = 1 AU, the colatitude θ = 90◦, the turbulence
strength δB/B = 0.4, and the slab bend-over scale lslab =
0.03 AU for 50 MeV protons. For both isotropic and QLT forms
of the pitch-angle diffusion coefficient, we can see that the
parallel mean free path without adiabatic focusing is larger than
that with adiabatic focusing across the entire range from 200 to
1000 km s−1. With increasing solar wind speed, the difference
increases between parallel mean free paths with and without
adiabatic focusing. This indicates that the adiabatic focusing
effect is more considerable when SEPs transport in the solar
wind with higher speed. In addition, the parallel mean free

Figure 8. Parallel mean free path λ‖ of SEPs as a function of the magnetic field
turbulence strength δB/B.

path obtained with the QLT form of the pitch-angle diffusion
coefficient is larger than that obtained with the isotropic form.

Figure 8 shows the parallel mean free path of SEPs as a
function of the magnetic field turbulence strength δB/B. We
typically set the radial distance r = 1 AU, the colatitude
θ = 90◦, the solar wind speed V = 400 km s−1, and the slab
bend-over scale lslab = 0.03 AU for 50 MeV protons. In Figure 8,
when δB/B � 0.3 for both isotropic and QLT forms of the pitch-
angle diffusion coefficient, we can see that the parallel mean
free path without adiabatic focusing is much larger than that
with adiabatic focusing; in addition, the parallel mean free path
obtained with the isotropic form of the pitch-angle diffusion
coefficient is larger than that obtained with the QLT form.
However, when δB/B � 0.3, there is basically no difference
between parallel mean free paths with and without adiabatic
focusing, and the parallel mean free path obtained with the
QLT form of the pitch-angle diffusion coefficient is larger than
that obtained with the isotropic form. Across the entire range
of turbulence strength δB/B from 0.05 to 2, the parallel mean
free path without adiabatic focusing monotonously decreases
from tens of AUs with increasing turbulence strength, while the
parallel mean free path with adiabatic focusing increases with
the turbulence strength until δB/B ≈ 0.21, where it peaks at
about 1 AU and then decreases with the turbulence strength
δB/B.

Figure 9 displays the parallel mean free path of SEPs as a
function of the slab bend-over scale lslab. We typically set the
radial distance r = 1 AU, the colatitude θ = 90◦, the solar wind
speed V = 400 km s−1, and the turbulence strength δB/B = 0.4
for 50 MeV protons. With the exception of the case with
adiabatic focusing for the QLT form of the pitch-angle diffusion
coefficient, we can see that the parallel mean free path for each
case monotonously increases with increasing slab bend-over
scale across the entire range from 0 to 0.5 AU. Additionally, the
parallel mean free path without adiabatic focusing is larger than
that with adiabatic focusing for both isotropic and QLT forms of
the pitch-angle diffusion coefficient. Moreover, note that when
the slab bend-over scale lslab > 0.41 AU, the parallel mean free
path with adiabatic focusing for the QLT form of the pitch-angle
diffusion coefficient is negative. The reason for this problem
may be that Equation (24) is used for weak focusing and only
has second-order precision in the focusing strength.

The rigidity dependence of the parallel mean free path of
SEPs is a very significant topic in the community, and it
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Figure 9. Parallel mean free path λ‖ of SEPs as a function of the slab bend-over
scale lslab.

was investigated by a number of authors (e.g., Palmer 1982;
Bieber et al. 1994; Giacalone 1998). Figure 10 depicts the
parallel mean free path of SEPs as a function of particle
rigidity. We typically set the radial distance r = 1 AU, the
colatitude θ = 90◦, the solar wind speed V = 400 km s−1,
the turbulence strength δB/B = 0.4, and the slab bend-over
scale lslab = 0.03 AU. The gray horizontal shading area in
Figure 10 denotes the observational consensus for the parallel
mean free path, which was first characterized by Palmer (1982).
The Palmer consensus extends from 0.08 to 0.3 AU and covers a
rigidity range of 0.5–5000 MV. As one can see, for both isotropic
and QLT forms of the pitch-angle diffusion coefficient, the
parallel mean free path either with or without adiabatic focusing
monotonously increases with increasing particle rigidity across
the entire range from 0.1 to 15, 000 MV, which agrees well
with the results of Bieber et al. (1994). The parallel mean free
path obtained with the QLT form of the pitch-angle diffusion
coefficient is larger than that obtained with the isotropic form.
For both isotropic and QLT forms of the pitch-angle diffusion
coefficient, the difference between parallel mean free paths with
and without adiabatic focusing increases with particle rigidity.
Specifically, when particle rigidity P � 200 MV, the difference
between parallel mean free paths with and without adiabatic
focusing is negligible; when particle rigidity P � 200 MV,
the difference increases gradually with particle rigidity. This
indicates that for the SEPs with higher energy, the adiabatic
focusing effect is more important in their transport processes
through interplanetary space. Note that the parallel mean free
paths presented in Figure 10 remain in or near the Palmer
consensus band.

5. SUMMARY AND CONCLUSION

The parallel mean free path of SEPs, which is determined
by physical properties of SEPs as well as those of solar wind,
is a very important physical parameter in space weather. To
accurately estimate the parallel mean free path of SEPs for
a solar event, one usually must use a so-called simulation
method, i.e., fitting time profiles of both flux and anisotropy from
spacecraft observations to simulations of the transport processes
of SEPs. However, as we know, such fittings and simulations
are time consuming, even with modern supercomputers. In
space weather practice, we usually need to obtain a quick
approximation of the parallel mean free path of SEPs. Therefore,

Figure 10. Parallel mean free path λ‖ of SEPs as a function of particle rigidity P.
The gray horizontal shading area denotes the Palmer consensus band.

it is quite necessary to provide an efficient method to quickly
estimate the parallel mean free path of SEPs. He & Qin (2011)
presented an analytical method by fitting the anisotropy time
profiles between spacecraft observations and the approximate
analytical formula as Equation (4) to quickly estimate the
parallel mean free path of SEPs for impulsive SEP events.
Basically, however, this method can determine the parallel mean
free path of SEPs only when the anisotropy time profile has
been observed by spacecraft, i.e., after the SEPs arrive at the
spacecraft. This limitation would be an obstacle in space weather
forecasting since we usually need to quickly estimate the parallel
mean free path of SEPs after they have been produced from
the surface of the Sun to predict their transport process and
space-time evolution before they arrive at the spacecraft or enter
Earth’s orbit.

Based on the results of Shalchi (2011), we provide a so-called
direct method in this paper to quickly determine the parallel
mean free path of SEPs with adiabatic focusing. This method
uses a direct analytical formula as a function of the physical
parameters corresponding to realistic properties of SEPs and
solar wind. Therefore, the method is reliable from a theoretical
point of view and is computationally tractable with a simple
mathematical form. So, in space weather practice, we could use
the direct method to quickly estimate the parallel mean free path
of SEPs with adiabatic focusing for both impulsive and gradual
SEP events. Additionally, we apply the direct method in the
present paper to investigate the inherent relations between the
parallel mean free path of SEPs and the physical properties of
SEPs as well as those of solar wind. Comparisons of the parallel
mean free paths of SEPs with and without adiabatic focusing
are also presented. The main conclusions of our results in this
paper are as follows:

1. By using realistic physical parameters concerning the
properties of SEPs and solar wind as inputs other than
fitting time profiles of flux or anisotropy, the direct method
presented in this work can easily be applied to quickly
determine the parallel mean free path of SEPs with adiabatic
focusing for both impulsive and gradual SEP events.

2. The rigidity dependence of the parallel mean free path of
SEPs obtained with the direct method for typical physical
parameters agrees well with the Palmer consensus band and
the results of Bieber et al. (1994).
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3. In the inner heliosphere, i.e., when the radial distance
r � 1 AU, especially near the Sun, the adiabatic focusing
effect plays a very important role in the transport processes
of SEPs in interplanetary space. However, in the outer
heliosphere, the significance of the adiabatic focusing effect
is largely reduced.

4. Generally, with the same physical conditions, the parallel
mean free path obtained with the QLT form of the pitch-
angle diffusion coefficient is larger than that obtained with
the isotropic form of the pitch-angle diffusion coefficient.

5. For the isotropic form of the pitch-angle diffusion coef-
ficient, the parallel mean free path of SEPs is always a
positive value; however, the parallel mean free path for the
QLT form of the pitch-angle diffusion coefficient can be
a negative value, which is difficult to understand since the
parallel mean free path is defined as a positive parameter.
The reason for this difference may be that Equation (17)
is an exact formula for both weak and strong adiabatic fo-
cusing; however, Equations (19) and (24) are only used for
weak focusing, and have up to second-order precision in the
focusing strength (Shalchi 2011). Therefore, Equation (17)
is preferred.

6. As demonstrated in the present paper, the parallel or
radial mean free path of SEPs depends on the physical
properties of SEPs as well as those of interplanetary
conditions such as solar wind and the turbulent magnetic
field. To more accurately simulate the transport processes
of SEPs throughout interplanetary space, it is suggested to
adopt the spatially dependent parallel or radial mean free
path with adiabatic focusing presented in this paper.

The direct method to determine the parallel mean free path
of SEPs provided in the present paper is a reliable and useful
tool in practice, especially for space weather forecasting. In the
future, we will use this new direct method in space weather
research to quickly determine the parallel mean free path of
SEPs with adiabatic focusing and try to use it to investigate the
transport processes of SEPs through interplanetary space for
both impulsive and gradual SEP events.
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