Simulated equinoctial asymmetry of the ionospheric vertical plasma drifts

Zhijing Ren,¹ Weixing Wan,¹ Jianguo Xiong,¹ and Libo Liu¹

Received 22 June 2011; revised 23 October 2011; accepted 2 November 2011; published 4 January 2012.

This paper studies the influence of the lower thermospheric tidal winds below 105 km on the equinoctial asymmetry of the equatorial vertical $E \times B$ plasma drifts (V_\perp) using Theoretical Ionospheric Dynamo Model II of the Institute of Geology and Geophysics, Chinese Academy of Sciences (TIDM-IGGCAS-II) and tidal winds below 105 km from thermosphere-ionosphere-mesosphere-energetics-dynamics satellite Doppler Interferometer (TIDI) observations. Although a series of other nonmigrating tides also affect the V_\perp asymmetry, the simulated equinoctial asymmetry in V_\perp are mainly driven by the migrating diurnal tide (DW1), migrating semidiurnal tide (SW2), DE3, and DW2 nonmigrating tides. The asymmetry in daytime V_\perp varies with local time and longitude and mainly shows three features. First, the simulated daytime V_\perp during the March equinox is larger than that during the September equinox in most of longitudinal sectors. This asymmetry is mainly driven by the semiannual oscillation (SAO) of the migrating diurnal tide in the tropical mesosphere-lower thermosphere (MLT) region, and the equinoctial asymmetry of the migrating semidiurnal tide also plays an important role in the generation of this asymmetry. Second, the daytime V_\perp asymmetry in the Eastern Hemisphere is more significant than that in the Western Hemisphere. Our simulation suggests that the longitudinal variations of the geomagnetic fields and DW2 tides play important roles in the generation of this hemisphere difference. Third, there is an obvious wave number 4 longitudinal structure in the V_\perp asymmetry. Our simulation suggests that this wave number 4 structure is mainly driven by the equinoctial asymmetry of the DE3 tide.

1. Introduction

The ionospheric equinoctial asymmetry, with some ionospheric parameters being larger during one equinox than that during the other one, is an important feature of ionospheric seasonal variation. Since Titheridge [1973] first studied such asymmetry in the mid-latitude ionospheric electron density, many researchers had found the ionospheric equinoctial asymmetry in a series of ionospheric density parameters, such as total electron content (TEC), topside ionospheric electron density, ionospheric electron density profiles, and low-latitude ionospheric wave number 4 structures [e.g., Bailey et al., 2000; Unnikrishnan et al., 2002; Zhao et al., 2007; Wang et al., 2008; Liu et al., 2010]. Based on the observations of the incoherent scatter radars (ISRs) and of the satellites, similar asymmetry also had been found in other ionospheric parameters, such as the F layer height, electron temperatures, ion temperatures, field-parallel drifts and field-perpendicular plasma drifts [e.g., Titheridge and Buonsanto, 1983; Aruliah et al., 1996; Balan et al., 1998; Kawamura et al., 2002; Zhang et al., 2004; Ren et al., 2011]. Previous research was mainly related to the ionospheric equinoctial asymmetry in the high latitudes and middle latitudes. Recently, from the ionospheric electron density profiles and TEC data, Liu et al. [2010] investigated the behaviors of the daytime ionosphere around equinoxes and found that the equinoctial asymmetry in the ionospheric plasma density during low solar activity is mainly a low-latitude phenomenon.

The equatorial F region vertical plasma drifts (V_\perp) play an important role in the low-latitude ionospheric dynamics and can control the low-latitude and equatorial ionosphere. Thus, the results of Liu et al. [2010] imply that there may be an equinoctial asymmetry in equatorial V_\perp. With V_\perp data observed by ROCSAT-1, Ren et al. [2011] studied the equinoctial asymmetry of equatorial V_\perp and suggested that such asymmetry can partly explain the equinoctial asymmetry in the daytime low-latitude ionospheric plasma density observed by Liu et al. [2010]. The equatorial ionospheric electric fields (or $E \times B$ plasma drifts) are mainly driven by E and F region neutral wind dynamos [e.g., Heelis, 2004]. The E region dynamo is driven mainly by the tidal winds that come from below, and the F region dynamo is driven mainly by neutral winds driven by the in situ heating. Therefore, the equinoctial asymmetry in V_\perp should mainly arise from...
the asymmetry in the mesosphere-lower thermosphere (MLT) tides and in thermospheric winds.

[4] Previous research suggested that the thermospheric equinoctial asymmetry, as well as such asymmetry in MLT regions, should play important roles in the generation of the ionospheric equinoctial asymmetry [e.g., Balan et al., 1998]. The equinoctial asymmetry in MLT tides and in thermospheric winds had already been found in a series of works [e.g., Aruliah et al., 1996; Balan et al., 1998, 2006; Liu et al., 2003]. For example, Aruliah et al. [1996] found a large equinoctial asymmetry in high-latitude thermospheric winds and plasma drifts. With the observations of the peak height of the F layer (hmF2) over Wuhan, Liu et al. [2003] found that the thermospheric wind magnitude is smaller during the spring equinox than during the autumn equinox. Using the middle and upper atmosphere (MU) radar observations, Balan et al. [2006] studied the equinoctial asymmetry in diurnal mean winds, tides, and waves in the MLT region and suggested that thermosphere and MLT regions could be dynamically coupled through mean winds, tides, and waves. Recently, research based on the observations made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and the thermosphere-ionosphere-mesosphere-energetics-dynamics satellite (TIMED) Doppler Interferometer (TIDI) instruments on board the TIMED satellite has provided new insights into tidal phenomena in MLT regions and has revealed the climatology and the spatiotemporal distributions of the most important tidal components in temperature and zonal and meridional winds, respectively [e.g., Forbes et al., 2006, 2008; Oberheide et al., 2006; Oberheide and Forbes, 2008; Zhang et al., 2006]. These scientists studied the climatology of the migrating (sun-synchronous) and nonmigrating (non-sun-synchronous) tides [e.g., Forbes et al., 2006, 2008; Oberheide et al., 2006; Oberheide and Forbes, 2008; Zhang et al., 2006; Pancheva et al., 2009] and found some equinoctial asymmetries in these tides. For example, Mukhtarov et al. [2009] and Xu et al. [2009] studied the semianual oscillation (SAO) and showed that the migrating diurnal tidal amplitude in the tropical MLT region is largest around two equinoxes (SAO), and the first cycle of the SAO (spring equinox) is stronger than the second cycle (autumn equinox). Ren et al. [2011] studied the equinoctial asymmetry of equatorial V_{\perp} with the data observed by ROCSAT-1 and suggested that the asymmetry in MLT tides may play important roles in the asymmetry of equatorial V_{\perp}. In the present work, we study the equinoctial asymmetry in equatorial V_{\perp} using the TIMED-IGGCAS-II model and tidal winds from TIMED-TIDI observations. We mainly simulate the influence of the lower thermospheric tidal winds below 105 km on asymmetry in V_{\perp} and examine the influences of different tide components.

2. Model and Inputs

[5] To simulate the equinoctial asymmetry in equatorial V_{\perp}, we use the Theoretical Ionospheric Dynamo Model (version II) developed at the Institute of Geology and Geophysics, Chinese Academy of Sciences (TIMED-IGGCAS-II) [Ren et al., 2008a]. Through adopting the magnetic apex coordinates, TIMED-IGGCAS-II can simulate ionospheric electric fields in realistic geomagnetic fields. Similar to the simulations by Ren et al. [2010], we take an equivalent extrapolation condition at the high latitudinal boundary in the following simulations. An International Geomagnetic Reference Field (IGRF) geomagnetic field is also used in these simulations. The ionospheric dynamo is controlled by the ionospheric electrical conductivity and thermospheric-neutral winds. The model electrical conductivity in TIMED-IGGCAS-II is calculated based on the parameters from IRI2000 and MSIS00 empirical models, which are all carried out with $Ap = 4$ and $F_{10.7} = 130$. Similar to those in the work by Ren et al. [2010], the input neutral wind fields were obtained from TIDI observations.

[6] TIDI is a limb scanner on board the TIMED satellite and can measure the zonal (eastward) and meridional (northward) components of the neutral winds in MLT regions by monitoring the Doppler shift of the various upper atmosphere airglow layers [Killeen et al., 2006]. It was developed and built at the University of Michigan and has continuously taken data since March 2002. TIDI observations from March 2002 (high solar activity year) to early November 2007 (low solar activity year) are downloaded from the National Center for Atmospheric Research (NCAR) (see http://timed.hao.ucar.edu/tidi). Although tides are known to have a dependence on solar activity partly because of the way that molecular dissipation affects vertical propagation, previous work suggested that the lower-altitude tides do not show obviously solar activity variations [e.g., Forbes et al., 2008]. Thus, we used the averaged tidal wind between 2002 and 2007 in this simulation. The average can also partly remove the variations in the data that are due to variations with periods longer than 60 days.

[7] The TIMED-TIDI data from 20 February to the end of 2007 are used to obtain tidal components of zonal and meridional velocities. The TIMED orbit processes cover 24 h of local time for every 60 days with combined ascending and descending node data. We process the data using consecutive 60 day windows moved forward in time once per day. The data in 60 day windows were averaged in 5 km altitude, 10° latitude, 20° longitude, and 1 h local time bins to obtain $U(t, \lambda, \varphi, z, d)$, $V(t, \lambda, \varphi, z, d)$ in the window centered at d day, where U and V are zonal and meridional velocities, respectively, in the window, $t = 0, 1, 2, \ldots, 23$ h is universal time, and λ, φ, and z are geographical longitude, latitude, and altitude, respectively. Then, by a two-dimensional Fourier transform, the data in each latitude-altitude bin were decomposed into tidal models:

$$\begin{align*}
U(h, \varphi, \lambda) &= \sum_{k} U_{k}(\varphi, h, d) e^{2i\pi(\lambda-k)} \\
V(h, \varphi, \lambda) &= \sum_{k} V_{k}(\varphi, h, d) e^{2i\pi(\lambda-k)}
\end{align*}$$

where $f(=1, 2, \ldots)$ is the tidal frequency in cycles/day and $k(=0, \pm 1, \pm 2, \ldots)$ is the longitudinal wave number in the UT frame, which is related to the local time (LT) wave number k', i.e., $k' = |f| + k l$. The amplitudes and phases of diurnal and semidiurnal tides can be obtained from complex Fourier spectra $U_{k}(\varphi, h, d)$ and $V_{k}(\varphi, h, d)$ The amplitudes and phases obtained with the above method are almost the same as those obtained by using a least squares method [Wu et al., 2008]. Then we use an inverse Fourier transformation to reconstruct zonal tidal winds and meridional tidal winds.
Finally, we obtain the average zonal and meridional winds from 85 to 105 km with a vertical resolution of 5 km and from pole to pole with a latitudinal resolution of 5° for different tidal models during the March equinox and the September equinox. The details of calculations of these tides from TIDI observations can also be seen in the work by Ren et al. [2010]. Here, we use the eastward and westward propagating diurnal tides (DEs and DWs) and eastward and westward propagating semidiurnal tides (SEs and SWs) in these simulations. The s (s = 1, 2, 3, and 4, \(s = 1k\)) in DEs and DWs and SEs and SWs all describe the zonal wave number in the UT frame.

However, TIDI can provide only the wind below 105 km. Thus, we must set the winds above 105 km. Ren et al. [2010] used to simulate the ionospheric wave number structures in equatorial \(V_\perp\) based on DE3 tidal winds observed by TIDI. Because of the lack of enough observations, they set the DE3 tidal winds above 105 km to decrease linearly with altitude and become zero above 150 km. However, different tides show different altitudinal variations [Forbes et al., 2008], and a simple description is difficult for describing the complex altitudinal variations of different tides. Thus, we could not use a similar method to provide the higher thermospheric winds. Ren et al. [2011] suggested that the semiannual oscillation (SAO) may play an important role in the formation of the equinoctial asymmetry in equatorial \(V_\perp\), and the tidal winds in the lower altitude may greatly affect the equinoctial asymmetry. Thus, we use only the tidal winds observed by TIDI in this simulation and set the wind above 105 km to be zero. However, we should notice that the F region dynamo and the E region dynamo above 105 km play important roles in the generation of the daytime and nighttime ionospheric electric fields (or \(E \times B\) plasma drifts). Because of the absence of the winds above 105 km, our simulation could not respond well to the diurnal variations of the ionospheric \(E \times B\) plasma drifts. Hence, we will mainly pay attention to the equinoctial asymmetry in simulated equatorial \(V_\perp\) and the influences of different tide components on it.

3. Equinoctial Asymmetry in Equatorial \(V_\perp\)

[9] We first simulate the equinoctial asymmetry in equatorial vertical \(E \times B\) plasma drifts \((V_\perp)\) driven by all tides together. These tides include the eastward and westward propagating diurnal (DEs and DWs) and semidiurnal (SEs and SWs) tides \((s = 1, 2, 3,\) and 4\()).\) With a series of simulations, we get the local time and longitudinal dependences of \(V_\perp\) over the dip equator at two equinoxes driven by all tides together. Ren et al. [2011] studied the equinoctial asymmetry of equatorial \(V_\perp\) at the height of 600 km. Here, we also mainly show simulated \(V_\perp\) at the height of 600 km. Figure 1 shows the local time and longitudinal variations of the simulated \(V_\perp\) at the height of 600 km for the March equinox (Figure 1a) and for the September equinox (Figure 1b). Because of the lack of the winds and the dynamo processes above 105 km, the simulated \(V_\perp\) could not respond well to the diurnal variations of the observed \(V_\perp\). Thus, in following sections, we mainly study the simulated \(V_\perp\) asymmetry between the March equinox and the September equinox caused by the tidal winds below 105 km. Figure 1c shows the local time and longitudinal variations of \(V_\perp\) asymmetry \((V_{March} - V_{September})\). To show the details, the longitudinal variations of \(V_\perp\) asymmetry at 1200 LT are also shown in
Figure 1d. As there was a lack of F region neutral wind and F region dynamo in the simulations, we could not well simulate the nighttime V_{\perp}, which are mainly driven by the F region dynamo. Thus, we will mainly pay attention to the daytime V_{\perp} asymmetry.

[10] We notice three features in the daytime V_{\perp} asymmetry. Notice first that the daytime V_{\perp} at the March equinox are larger than those at the September equinox in most of longitudinal sectors. The longitudinal average V_{\perp} asymmetry at 1200 LT is about 3 m/s. As the simulated V_{\perp} are driven by the E region tidal winds below 105 km, this phenomenon must relate to the equinoctial asymmetry in E region tides, such as the SAO in the tropical MLT region.

Previous research suggested that the migrating diurnal tidal amplitude in the tropical MLT region is largest around two equinoxes, and the first cycle of the SAO (spring March equinox) is stronger than the second cycle (autumn September equinox) [e.g., Dunkerton, 1982; Garcia et al., 1997; Mukhtarov et al., 2009; Xu et al., 2009]. The stronger migrating diurnal tide can drive a stronger E region dynamo and a stronger equatorial V_{\perp}. We examine the details of this mechanism in the next section.

[11] Second, we notice that the daytime V_{\perp} asymmetry in the Eastern Hemisphere is more significant than that in Western Hemisphere. As shown in Figure 1d, the average of the V_{\perp} asymmetry at 1200 LT in the Eastern Hemisphere is about 1.5 m/s larger than that in the Western Hemisphere. Ren et al. [2011] also found similar phenomenon in the V_{\perp} observed by ROCSAT-1. However, they pointed out that asymmetry between the Eastern Hemisphere and the Western Hemisphere can reach nearly 10 m/s, which is obviously larger than our simulated results. This difference may relate to the lack of the winds above 105 km. However, in both the simulation and in the data observed by ROCSAT-1, the asymmetry in the Eastern Hemisphere is more significant than that in the Western Hemisphere. Ren et al. [2011] guessed that this difference may be driven by the nonmigrating tide that can drive wave number 1 longitudinal structures, such as DW2, D0, SW3, SW1, sPW1. Actually, equinoctial asymmetries have also been found in the seasonal variations of these tides. For example, Forbes et al. [2003] pointed out that the maximum amplitudes of DW2 meridional wind occur during October–November and January–February, and the seasonal variations of DW2 meridional wind show an equinoctial asymmetry. Similar results have also been found by Forbes et al. [2008], Oberheide and Forbes [2008] and Ren et al. [2009a]. Thus, the wave number 4 longitudinal structure in the V_{\perp} asymmetry may be mainly driven by the asymmetry in DE3 tidal winds.

4. Influence of Different Tides on V_{\perp} Asymmetry

[13] We also simulated the local time and longitudinal dependences of equatorial V_{\perp} driven by different tides (including DEs, DWs, SEs, and SWs; $s = 1, 2, 3, \text{and } 4$). As there are too many tides, we study only the most important tides. Figure 2a shows the diurnal and longitudinal averaged amplitudes of the simulated March equinox V_{\perp} driven by different tides. The x axis shows the wave number, and the asterisks and the circles show the V_{\perp} amplitude driven by the diurnal and the semidiurnal tides, respectively. As shown in Figure 2a, the V_{\perp} driven by migrating diurnal (westward propagating diurnal tide with zonal wave number 1, DW1) and semidiurnal (westward propagating semidiurnal tide with zonal wave number 2, SW2) tides are obviously larger than all kinds of nonmigrating tides. In the nonmigrating tides, the DE3 tide drives the largest V_{\perp}. Similar to Figure 2a, Figure 2b shows the simulated averaged V_{\perp} amplitudes for the September equinox. The V_{\perp} driven by migrating diurnal (DW1) and semidiurnal (SW2) tides are also larger than all kinds of nonmigrating tides. However, the V_{\perp} amplitude at the September equinox driven by SW2 is about 0.5 m/s smaller than that at the March equinox. The V_{\perp} driven by nonmigrating tides also show obvious equinoctial asymmetry. The DE3, DE2, and DW2 tides drive larger V_{\perp} than the other nonmigrating tides. The V_{\perp} driven by eastward propagating nonmigrating diurnal tides with zonal wave number 3 (DE3) and driven by westward propagating nonmigrating diurnal tides with zonal wave number 2 (DW2) at the September equinox are larger than those at the March equinox. These asymmetries may mainly relate to the amplitude asymmetry of DE3 and DW2 tides. We should notice that the amplitude difference often could not well describe the V_{\perp} asymmetry, and the “phase” difference usually also plays an important role. Thus, we show the local time and
longitudinal averaged amplitudes of the V_{\perp} asymmetry ($V_{\text{March}} - V_{\text{September}}$) driven by different tides in Figure 2c. As shown in Figure 2c, the migrating diurnal tide (DW1) drives the largest V_{\perp} asymmetry. The asymmetry driven by the migrating semidiurnal tide (SW2) is also larger than that driven by the nonmigrating tides. Although the V_{\perp} asymmetries driven by DE1, DE2, SE1, and SE2 tides are all strong, the DE3 and DW2 tides drive larger V_{\perp} asymmetries than the other nonmigrating tides. Thus, we mainly study the influences of DW1, SW2, DE3, and DW2 on the V_{\perp} asymmetry in the following discussion.

[14] Figures 3a–3d show the V_{\perp} asymmetry driven by the DW1, SW2, DE3, and DW2 tides, respectively. Figure 3a shows the local time and longitudinal variations of V_{\perp} asymmetry driven by the migrating diurnal tide (DW1). We can notice two features in this daytime V_{\perp} asymmetry. Notice first that the daytime V_{\perp} at the March equinox are larger than those at the September equinox in most of the longitudinal sectors. This phenomenon should connect with the SAO. Second, there is an obvious asymmetry between the Eastern Hemisphere and the Western Hemisphere, and the equinoctial asymmetry in the Eastern Hemisphere is mainly more significant than that in the Western Hemisphere. This phenomenon may be caused by the longitudinal variations of the geomagnetic fields. Figure 3b shows the local time and longitudinal variations of the V_{\perp} asymmetry driven by the DW2 tide. The daytime V_{\perp} in the Eastern Hemisphere at the March equinox are mainly larger than those at the September equinox, and the daytime V_{\perp} in the Western Hemisphere at the March equinox are mainly smaller than those at the September equinox. This asymmetry may mainly relate to the amplitude asymmetry of the DW2 tide. Figure 3c shows the local time and longitudinal variations of the V_{\perp} asymmetry driven by the migrating semidiurnal tide (SW2). This asymmetry shows obviously semidiurnal variations in all longitudinal sectors. We mainly

Figure 2. The diurnal and longitudinal averaged amplitudes of the simulated V_{\perp} driven by different tides at the height of 600 km for (a) the March equinox and (b) the September equinox. (c) The diurnal and longitudinal averaged amplitudes of the V_{\perp} asymmetry driven by different tides. The x axis is the wave number, and the V_{\perp} amplitudes driven by the diurnal (asterisks) and semidiurnal (circles) tides are also shown.

Figure 3. The local time and longitudinal variations of the V_{\perp} asymmetry ($V_{\text{March}} - V_{\text{September}}$) at the height of 600 km driven by (a) DW1, (b) DW2, (c) SW2, and (d) DE3 tides.
At the March equinox are mainly larger than those at the September equinox. Therefore, the simulated equinoctial asymmetry driven by the migrating diurnal tide at the March equinox is mainly larger than those at the September equinox. Thus, the realistic geomagnetic fields play an important role in this longitudinal asymmetry. To examine this idea, we also simulate the V_{\perp} driven by the DW1 tide at two equinoxes in a coaxial central dipole field. Figure 3a shows the local time and longitudinal variations of V_{\perp} asymmetry at the height of 600 km. To show the details, we also compare the longitudinal variations of V_{\perp} asymmetry at 1000 LT in a coaxial central dipole field (black asterisks) and in a realistic geomagnetic field (red asterisks).

As shown in Figure 3c, the morning V_{\perp} at the March equinox is mainly smaller than those at the September equinox, and the afternoon V_{\perp} at the March equinox is mainly larger than those at the September equinox. Figure 3d shows the local time and longitudinal variations of V_{\perp} asymmetry driven by the DE3 tide. This asymmetry shows a wave number 4 longitudinal structure, and this wave number 4 structure shifts eastward as local time increases. We should also notice that the wave number 4 structure in the afternoon is stronger than that in the morning. These results can help us to understand the sources of the simulated daytime V_{\perp} asymmetry in the third section.

As V_{\perp} asymmetries driven by the DW1, SW2, DE3, and DW2 tides are obviously larger than those driven by the other tides, the daytime V_{\perp} asymmetry driven by all tides together should also be mainly controlled by them. Thus, the three features in the total daytime V_{\perp} asymmetry should also mainly connect with the DW1, SW2, DE3, and DW2 tides. As shown in Figures 3b and 3d, although the DW2 and DE3 both affect the daytime V_{\perp} asymmetry, the longitudinally averaged daytime asymmetries driven by them are nearly zero. Different from DW2 and DE3, DW1 can drive the more significant daytime V_{\perp} at the March equinox than those at the September equinox. We should also notice that SW2 can also drive the larger afternoon V_{\perp} at the March equinox than those at the September equinox. Thus, the DW1 and SW2 both drive the larger daytime V_{\perp} at the March equinox.

Although the daytime V_{\perp} asymmetries driven by the DW1, SW2, DE3, and DW2 all show obviously longitudinal variations, it is seen that the SW2 and DE3 tides could not drive the difference between the Eastern Hemisphere and the Western Hemisphere in the daytime V_{\perp} asymmetry. Ren et al. [2011] suggested that this hemisphere difference may be driven by the DW2, D0, SW3, and SW1 tides. Our simulation suggests that the DW1 and DW2 tides play important roles in the generation of this hemisphere difference. The DW2 tide shows a wave number 1 longitudinal structure in the LT frame. Thus, as shown in Figure 3b, it can drive the hemisphere difference. However, DW1 is a migrating tide and does not show longitudinal variations in the LT frame. Hence, the realistic geomagnetic fields may play an important role in this longitudinal asymmetry. To examine this idea, we also simulate the V_{\perp} driven by the DW1 tide at two equinoxes in a coaxial central dipole field. Figure 4a shows the local time and longitudinal variations of V_{\perp} asymmetry at the height of 600 km. To show the details, we also compare the longitudinal variations of V_{\perp} asymmetry at 1000 LT in a coaxial central dipole field (black asterisks) and in a realistic geomagnetic field (red asterisks) in Figure 4b. Because of the longitudinal variations of ionospheric electrical conductivity, V_{\perp} asymmetry in a coaxial central dipole field also shows some longitudinal asymmetry. However, as shown in Figure 4b, the longitudinal asymmetry in a coaxial central dipole field is obviously weaker than that in a realistic geomagnetic field. Thus, the longitudinal variations of the geomagnetic fields should also play an important role in the generation of hemisphere difference.

Ren et al. [2011] found that this is a wave number 4 longitudinal structure in the observed daytime V_{\perp} asymmetry and suggested that this structure is driven by the equinoctial asymmetry in the DE3 tide. Actually, the equinoctial asymmetry of the wave number 4 structure in the equatorial V_{\perp} had been found in both observations and simulations [Ren et al., 2009a, 2010]. Ren et al. [2011] pointed out that the wave number 4 structure in the September equinox lasts longer than that in the March equinox. We notice that the wave number 4 structure in the afternoon V_{\perp} asymmetry driven by the DW3 tide (Figure 3d) is stronger than that in the morning. Ren et al. [2011] found that the wave number 4 structure in V_{\perp} exists almost throughout the daytime and even extends into the evening sector at the September equinox, while it appears mainly at noon and prenoon at the March equinox. Thus, the asymmetry of the morning wave number 4 structure must be weaker than that in the afternoon.

5. Summary and Conclusion

In the present work, using the TIDM-IGGCAS-II model and tidal winds below 105 km from TIMED-TIDI observations, we investigate the influence of the lower thermospheric tidal winds below 105 km on the equinoctial asymmetry of the equatorial vertical $E \times B$ plasma drifts (V_{\perp}) and examine the influences of different tide components. Although a series of other nonmigrating tides also affect the V_{\perp} asymmetries, the simulated equinoctial asymmetries are mainly driven by the migrating diurnal tide (DW1), the migrating semidiurnal tide (SW2), and the DE3
and DW2 nonmigrating tides. The asymmetry in the daytime V_\parallel varies with local time and longitude and mainly shows three features. First, the simulated daytime V_\parallel during the March equinox are larger than those during the September equinox in most of longitudinal sectors. This asymmetry is mainly driven by the semiannual oscillation (SAO) of the migrating diurnal tide in the tropical MLT region, and the equinoctial asymmetry of the migrating semidiurnal tide also plays an important role in the generation of this asymmetry. Second, we notice that the daytime V_\perp asymmetry in the Eastern Hemisphere is more significant than that in the Western Hemisphere, and the longitudinal variations of the geomagnetic fields and DW2 tides play important roles in the generation of this hemisphere difference. Third, there is an obvious wave number 4 longitudinal structure in the V_\perp asymmetry, and this is mainly driven by the equinoctial asymmetry of the DE3 tide.

[19] Acknowledgments. This work is supported by the National Important Basic Research Project (2011CB814050), National Science Foundation of China (41004070, 41130490, 40725014), and China Postdoctoral Science Foundation.

[20] Robert Lysak thanks the reviewers for their assistance in evaluating this paper.

References

L. Liu, Z. Ren, W. Wan, and J. Xiong, Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China. (zpren@mail.iggcas.ac.cn)