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Abstract

Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets,
especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical
remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this
paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of
foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a
microscopic interferometer. Our research shows that the silicon structure of VIII from upper lemmas and paleas in foxtail
millet and green foxtail can be correspondingly divided into two groups. The size of VIII type phytolith of foxtail millet is
bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of
data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for
distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail
millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a
meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the
history of foxtail millet domestication and cultivation in ancient civilizations are significant.
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Introduction

Understanding the process of plant domestication is fundamen-

tal to our comprehension of the rise of agriculture [1]. Plant

domestication involves a series of profound changes (morphologic

and genetic) resulting from selection that make wild species more

amenable to cultivation and consumption by humans [2–4].

Therefore, how to distinguish cultivated grain crops from their

closely related wild grasses from archaeobotanical remains is

essential for understanding the origin and spread of agriculture.

In North China, millet was the principal crop in the Neolithic

period [5–7]. Millets served as the staple grains that allowed

Chinese agricultural civilization to flourish in ancient times. To

date, the issues about where, when and how the crop transitioned

from simple gathering to domestication are still unclear [6,8,9],

thus the necessity to distinguish foxtail millet (Setaria italica) from its

ancestor, green foxtail (Setaria viridis), in archaeological remains.

For example, although foxtail millet-like residues have been

found at sites dated to the early Holocene across a broad belt of

Eurasia [9–15], the geographic origin of foxtail millet is a

controversial issue. Many hypotheses have been suggested, such

as the North China center [16,17], south-central Asia center [18],

central Europe center [19,20], and multiple centers [21–26],

although there has not been sufficient evidence to support any one

of these hypotheses. The problem is further complicated due to an

inability to distinguish foxtail millet from green foxtail in

archaeological remains during the early stages of domestication.

One important line of inquiry to differentiate the two is to study

the grain or inflorescence bract morphology of foxtail millet and

green foxtail.

To accomplish this task is difficult. First of all, because the grain

size of both foxtail millet and green foxtail is very small and their

grain shapes are similar [27,28], researchers are likely to confuse

the two in the archaeological remains. A previous study considered

that the overlapping range of grain length to breadth ratios

between foxtail millet and green foxtail is an obstacle for

identification of these two species [29]. Second, in some sites,

macro-remains are oxidized by heat into granules or ash, thus

losing critical diagnostic features [13,28]. The morphology of

starch grains also has been considered as a method to distinguish

between them [30–32], but it has not yet been confirmed.

Phytoliths are silica casts of plant cells created within and

between cells of living plants tissues that can remain in sediments

long after the living tissue has decayed [33]. Since phytoliths are

replicas of plant cell bodies, they can be used to identify a certain

genus or species according to shape, size, and other anatomical

features [34–37]. The development and application of phytolith

techniques make them useful tools for revealing historic vegetation

patterns and human uses across the fields of archaeology,

palaeoethnobotany, palaeoecology, and historical ecology in sites
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where preservation of macrobotanical remains is poor [13,35,38–

45].

Distinguishing wild and domesticated species in archaeological

residues in terms of phytolith morphology is a topic of great

scientific interest [46,47]. A number of phytolith studies have been

conducted to focus on this problem, e.g., Piperno used

morphological criteria to distinguish between Maize and wild

grass phytoliths [43], Pearsall et al. and Zhao et al. used

morphometric analysis to distinguish between domesticated and

wild Oryza phytoliths [39,44], Rosen et al., Ball et al., and Tubb

et al. investigated phytolith morphology and the taxonomy of

wheat, barley, and related wild grasses and offered preliminary

methods to distinguish among them in archaeological samples

[41,48–52]. Lu et al. found five key phytolith diagnostic

characteristics to distinguish common millet (P. miliaceum) from

foxtail millet (S. italica), but did not include details about how to

distinguish foxtail millet from green foxtail in archaeological

remains [47]. To date, few studies have been conducted to

differentiate the phytoliths of foxtail millet and green foxtail [53],

and none thoroughly investigated the effect of domestication of

foxtail millet on phytolith morphometry [47,53].

In this paper, we attempt to determine if phytolith analysis of

inflorescence bracts can be used as an effective tool for

discriminating foxtail millet from green foxtail. Furthermore,

based on modern millet samples from Europe and China, we

discuss the origin of foxtail millet domestication. Our findings yield

insights into the process of foxtail millet domestication across the

semi-arid region of East Asia.

Materials and Methods

We examined phytoliths from 9 samples of modern foxtail millet

(S. italica) and 7 samples of green foxtails (S. viridis) obtained from

annotated folders at the Institute of Millet Crops (IMC), Hebei

Academy of Agriculture and Forestry Sciences, Shijiazhuang,

China. The folders contained samples from field collections by

many investigators. For detailed data on the plants, see Table 1

and Figure 1.

In this study, three parts were dissected from the spikelet of

modern plants, including 1) lower glume, upper glume, and lower

lemma (lemma of sterile floret), 2) upper lemma, and 3) palea for

phytolith analysis (Figure 2) [29]. Palea can be divided into ‘‘palea

of first floret’’ and ‘‘palea of second floret.’’ ‘‘Palea of first floret’’

atrophies into a very small membranous organ and sometimes

becomes lost in the spikelet. Consequently, we used ‘‘palea’’ for the

‘‘palea of second floret’’ [47]. The three parts of the spikelet were

prepared wet oxidation, as described by Lu et al [47].

Results

Phytolith morphology of glumes and lower lemmas
Silica can occur in many parts of plants, including cell walls, cell

lumens, intracellular spaces, roots, and leaves [54]. For example,

in foxtail millet, its silica deposition always occurs in short cells

(silica bodies) of the caryopsis and in inflorescence bracts, such as

glumes and lemmas [53]. Based on our observations and statistics,

we found silica bodies from glumes and lower lemmas of foxtail

millet and green foxtail were generally similar (Figure 3).

Cross-shaped (ratio of length to width <1:1) phytoliths were

found in glumes and lower lemmas of both foxtail millet and green

foxtail. The size variation (length) tended to increase toward the

central part of the lower lemmas and glumes (foxtail millet: range

4.46–9.98 mm, average 7.5561.17 mm, n = 208; green foxtail:

range 5.68–10.54 mm, average 7.6760.86 mm, n = 201) [47].

A few silicified long cells, micro-hairs, macro-hairs, and stomata

in the lower lemma and glumes of both taxa had no diagnostic

character shape, so were not easily identified in terms of phytoliths.

This suggests that the cross-shaped phytoliths formed in the lower

lemmas and glumes cannot be used as criteria to distinguish foxtail

millet from green foxtail.

The undulating patterns of epidermal long cells in upper
lemmas and paleas

The undulating patterns of epidermal long cells in the upper

lemmas and paleas in green foxtail were complex and similar to

Table 1. Information on the plants studied.

No. Species IMC no. Province/country of origin

S1 Setaria italica (L.) Beauv. Z280 Gansu

S2 Setaria italica (L.) Beauv. Z335 Jilin

S3 Setaria italica (L.) Beauv. Z399 Henan

S4 Setaria italica (L.) Beauv. Z502 Inner Mongolia

S5 Setaria italica (L.) Beauv. Z557 Hebei

S6 Setaria italica (L.) Beauv. W28 France

S7 Setaria italica (L.) Beauv. Z169 France

S8 Setaria italica (L.) Beauv. Z734 Hungary

S9 Setaria italica (L.) Beauv. Z737 Romania

SV1 Setaria viridis (L.) Beauv. Qing 7-1 Yunnan

SV2 Setaria viridis (L.) Beauv. Qing 24 Hebei

SV3 Setaria viridis (L.) Beauv. Qing 28 Hebei

SV4 Setaria viridis (L.) Beauv. Qing 44 Liaoning

SV5 Setaria viridis (L.) Beauv. Qing 46 Shanxi

SV6 Setaria viridis (L.) Beauv. Qing 59 Ningxia

SV7 Setaria viridis (L.) Beauv. Qing 68 Henan

doi:10.1371/journal.pone.0019726.t001

Phytolith Analysis for Millet and Green Foxtail
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those from foxtail millet, such as the V-type (which can be subdivided

into VI, VII, and VIII) (Figure 4). Having similar undulations as

foxtail millet, in green foxtail the undulations tend to increase in

highly sinuous variation toward the central part of the lemmas and

paleas. The different V-undulated patterns occur at different points

by a gradual change from base to top (VI), to side (VII), and to center

(VIII) of the lemmas and paleas in green foxtail (Figure 4).

According to our observations and statistics for structures of

epidermal long cells, three important parameters can be used to

define morphological variations between foxtail millet and green

foxtail of structures of epidermal long cells in the upper lemmas

and paleas: W1 = width of undulated patterns of epidermal long

cells, W2 = width of epidermal long cells, H = undulation ampli-

tude of dendriform epidermal long cell walls (Figure 5). The

W1/H ratio was 2.5360.17 (n = 1866) and 2.4960.20 (n = 1457)

in foxtail millet and green foxtail, respectively.

While it was not possible to distinguish them by relative W1/H

ratio value of phytolith parameters, it was noteworthy that the

Figure 1. Photographs of Setaria grains. 1 = Z668, 2 = Z335, 3 = Z399, 4 = Z557, 5 = Z280, 6 = Z169, 7 = Z737, 8 = Z734, 9 = W28, 10 = Qing24,
11 = Qing68, 12 = Qing44, 13 = Qing46, 14 = Qing28, 15 = Qing7-1, 16 = Qing59.
doi:10.1371/journal.pone.0019726.g001
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absolute values of these parameters have taxonomic significance.

We measured the values of W1, W2, and H1 according to the

types of undulating patterns of epidermal long cell (VI, VII, and

VIII), respectively. A Mann-Whitney U test [55] was performed

for W1, W2 and H1 from foxtail millet and green foxtail (Table 2).

The Mann-Whitney U test, a nonparametric test for compar-

ison of two independent samples, is one of the most widely used

nonparametric tests [56]. Unlike the parametric t-test, this non-

parametric test makes no assumptions about the distribution of the

data [57], but it can tell us whether or not the central tendencies

(mean or median) of two groups were different from each other

and can test whether or not two samples come from the same

distribution based on the ranks of data of the two groups [56,58].

We found that, except for parameter H-2, in all the samples, the

Sig.,0.05, with a confidence level of 95%. This suggests that the

data from type VIII phytoliths come from different distributions of

foxtail millet and green foxtail.

Figure 6 shows the average value of W1-3, W2-3, and H-3 in

type VIII. The value of W1-3 was 64.265.9 mm in foxtail millet

and 52.262.8 mm in green foxtail; W2-3 was 11.961.9 mm and

8.061.1 mm, and H-3 was about 26.162.2 mm and 22.161.4 mm,

respectively. The VIII undulating patterns of epidermal long cells in

the upper lemmas and paleas in foxtail millet were more extended

than those in green foxtail. Based on these data, phytoliths from

foxtail millet and green foxtail, while similar, can be somewhat

distinguished from each other, and that only the VIII patterns of

epidermal long cells in the upper lemmas and paleas can be used to

statistically distinguish foxtail millet from green foxtail.

Discriminant function analysis of upper lemmas and
paleas

Discriminant function analysis is a statistical procedure for

identifying boundaries between groups of objects by analyzing

relationships of quantitative variables between these objects [59].

Discriminant function analysis is also applied to classify objects

into respective groups by analyzing the relationships between

variables of the objects and the boundaries defined in terms of

these variables [39].

Figure 2. Illustrations of spikelet and grain of millets with botanical terms. After reference [47].
doi:10.1371/journal.pone.0019726.g002

Figure 3. Comparison of phytolith morphology in the lower lemmas and glumes from foxtail millet and green foxtail. (A) Cross-
shaped phytolith from foxtail millet, after reference [47], (B) Cross-shaped phytolith from green foxtail.
doi:10.1371/journal.pone.0019726.g003

Phytolith Analysis for Millet and Green Foxtail
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Discriminant analysis deals with three aspects of data: groups,

objects, and variables. In this study, the species of foxtail millet and

green foxtail can be regarded as two groups, the phytoliths of

upper lemmas and paleas were the objects, and measurable

characteristics of W1-3, W2-3, and H-3 were the variables (as they

have the most significant difference between groups; see table 2). A

total of 1479 data points (872 from foxtail millet and 607 from

green foxtail) were used as the variables in this study. SPSS

software was used for the discriminant analysis.

The results of the discriminant analysis are presented in Table 3

and as a percentage of correct classifications in Table 4. The

within-group correlations between discriminating variables and

standardized canonical discriminant functions variables are higher

for W1-3 (0.958) and W2-3 (0.813), which means W1-3 and W2-3

contributed more to the discriminant function (Table 3); H-3 was

not included in the function as it did not pass the tolerance test.

A total of 78.4% of upper lemmas and paleas were correctly

classified into the foxtail millet group, and 76.9% into the green

foxtail group (Table 4) for an average of 77.8% of the subjects

correctly classified. These encouraging results indicated that the

VIII characters of upper lemmas and paleas had a strong tendency

to polarize between the foxtail millet and green foxtail.

Four varieties of modern foxtail millets, Shangdong dangdi gu,

Gansu dangdi gu, Donghui gu, and Zhuyeqing gu, and one fossil

sample of foxtail millet from the Han Yangling Mausoleum, built

for an Emperor of the Han Dynasty, Liu Qi (188-141 BCE) and

located to the north of Xi’an City, Shaanxi Province, China [60].

The five samples were selected at random to test the reliability of

discriminant analysis. The mean values of 872 measurements from

VIII epidermal long cells of foxtail millet (9 species) and 607

measurements from green foxtail (7 species) are shown in the

bivariate biplot, plotted along axis W1-3 (width of undulating

patterns of epidermal long cells in VIII) and axis W2-3 (width of

epidermal long cells in VIII). They have been classified into two

groups corresponding to the two species (foxtail millet and green

foxtail) (Figure 7). The four varieties of modern foxtail millets and

one fossil foxtail millet sample of husk phytoliths from Han Yangling

Mausoleum are plotted for prediction. For each predicted sample,

Figure 4. Comparison of undulated patterns of silicified epidermal long cells in different parts of the upper lemmas and paleas
from foxtail millet and green foxtail.
doi:10.1371/journal.pone.0019726.g004

Figure 5. Parameters of undulated patterns of silicified
epidermal long cells from foxtail millet and green foxtail.
doi:10.1371/journal.pone.0019726.g005

Phytolith Analysis for Millet and Green Foxtail
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we calculate the mean value of 20 measurements for each VIII

parameter (W1-3, W2-3, and H-3). As expected, Shangdong dangdi

gu (from Shangdong Province, Eastern China) was situated in the

transition zone between foxtail millet and green foxtail; the other

three samples were all correctly classified.

Phytolith papillae of upper lemmas and paleas
Phytolith papillae were found in both foxtail millet and green

foxtail. While all green foxtail samples had regularly arranged

papillae in upper lemmas and paleas. For Qing 59 from Ningxia

(Northwest China) and Qing 46 from Shanxi (North Central

Table 2. The result of non-parametric test for W1, W2, and H of undulated patterns of epidermal long cells from foxtail millet and
green foxtail.

Parameters Species No. Mean rank Mann-Whitney U Z value Asymp. Sig. (2-tailed)

W1-1 S. italica 537 517.63 73232.50 27.56 0.000

S. viridis 385 383.21

W1-2 S. italica 457 485.25 95398.00 22.69 0.007

S. viridis 465 438.16

W1-3 S. italica 872 926.52 102005.00 220.13 0.000

S. viridis 607 472.05

W2-1 S. italica 537 495.97 84864.00 24.64 0.000

S. viridis 385 413.43

W2-2 S. italica 457 513.81 82349.00 25.91 0.000

S. viridis 465 410.09

W2-3 S. italica 872 960.06 72756.00 223.75 0.000

S. viridis 607 423.86

H-1 S. italica 537 520.42 71733.50 27.93 0.000

S. viridis 385 379.32

H-2 S. italica 457 476.38 99454.00 21.68 0.093

S. viridis 465 446.88

H-3 S. italica 872 895.45 129103.50 216.78 0.000

S. viridis 607 516.69

W(1,2)-Y(Y = 1,2,3): W1 = width of undulating patterns of epidermal long cells; W2 = width of epidermal long cells; H-X(X = 1,2,3 ) = undulation amplitude of dendriform
epidermal long cell walls. X, Y = 1, 2, 3 = phytoliths in VI, VII, and VIII types.
doi:10.1371/journal.pone.0019726.t002

Figure 6. Comparison of W1-3, W2-3, and H-3 of undulating patterns of epidermal long cell from all S. italica and S. viridis based on
Box Plot. 9 species for S. italica (872 data) and 7 species for S. viridis (607 data).
doi:10.1371/journal.pone.0019726.g006
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China), however, only paleas have regularly arranged papillae; the

silicified upper lemmas were smooth. Six foxtail millet samples had

arranged papillae, but for Z734 from Hungary and Z557 from

Hebei (North Central China), the papillae were weak and only

present at the top and base of upper lemmas and paleas. For Z169

and W28 from France and Z399 from Henan (Central China), no

regularly arranged papillae were found on upper lemmas or paleas.

The papillae from foxtail millet and green foxtail tend to have

less size variation toward the base and top of the upper lemmas

and paleas (Figure 8). Papillae diameters in foxtail millet range

between 5 and 25 mm [47], whereas in green foxtail they range

between 10 and 20 mm [29].

The surface sculpture of epidermal long cells in upper
lemmas

Different cell layers, such as extracellular sheet (keratose

layer), outer epidermis, hypoderm fibers, vascular bundles, and

spongy mesophyll, can be silicified in diverse patterns. We

observed their morphology in the transections of lemmas and

paleas [61].

The ridged lines of the surface sculpture consisted of a very

heavy silicon layer that formed from an adnate silicon extracellular

sheet and outer epidermis. Although this sculpture can be used to

distinguish foxtail millet from common millet [47], based on our

observations of surface characteristic with different adnate silicon

layers in different V-types, the surface sculpture of the upper

lemmas from foxtail millet was very similar to that from green

foxtail. This means that the surface sculpture was not a good

criterion to distinguish between these two species.

Discussion

Morphological difference in epidermal long cells
between S. italica and S. viridis

Capturing domesticated trait alteration in morphology of plants

(e.g., grain size, starch and phytolith shape) is particularly critical

to understanding the transition from gathering to domestication. It

is an effective way to document the emergence of domestication.

Early investigators have reported for foxtail millet, grain length-

to-breadth ratios was 2.35-1.27, whereas in green foxtail, it was

3.27-1.76 [29]. A wider overlapping range of length-to-breadth

ratios between these two species made it difficult to differentiate

them.

Despite this wider overlapping range, on average foxtail millets

have plumper grains than those of green foxtail. Hence, the

difference between these two species is predicated on the width/

expansion of the lemmas and paleas, also resulting in a visible

difference of phytolith morphology at the center of lemmas and

paleas where silicified epidermal long cells are most complex, but

can be differentiated. Consequently, based on VIII phytoliths we

find significant differences in the central part of lemmas and paleas

between the two species (three phytolith parameters, W1-3, W2-3,

and H-3 from foxtail millet, were larger than comparable ones

from green foxtail). Moreover, discriminant function analysis for

VIII-type phytoliths showed that 78.4% of 872 foxtail millet data

and 76.9% of 607 green foxtail data were correctly classified.

These results suggest that VIII phytoliths from upper lemmas and

paleas are reliable tools for distinguishing these two species.

Because a phytolith is shaped almost completely according to

the cell outline, three phytolith parameters, as mentioned above,

reveal that the average size of undulated epidermal long cells from

foxtail millet is greater (expressed as parameter W1 and W2) and

the space between adjacent epidermal long cells (expressed as

parameter H) is larger than those from green foxtail (Figures 4 and

5). We speculate that morphological differences in epidermal long

cells between these two species is mainly due to increased grain

size.

Increased in seed size is a remarkable result of selective

domestication and cultivation [3,62]. This character is close

related to increased efficiency and competitiveness in germination

and early growth in open, heavily disturbed soils and with deeper

burial of seeds, which is expected under tillage [62,63]. This

domesticated trait alteration has already been demonstrated in

many crops, including rice [4,63], wheat, and barley [64].

Consequently, compared with green foxtail, we speculate foxtail

millet has larger intercellular spaces between adjacent epidermal

long cells and greater epidermal long cell size in upper lemmas and

paleas mainly due to large grain size, as a result of plant

domestication and cultivation.

However, little is known about the linkage between phytolith

morphological differentiation and genotypes when cultivated by

various traditional means. Additionally, there has some confusion

in the use of this morphological indicator. About 25% data are

incorrectly classified, make the identification difficult at least when

phytoliths are few, and we find only one diagnostic feature to

distinguish the two taxa, more local samples are needed to detect if

other diagnostic features are practicable. Further research is

needed on these topics.

Clues to the place of origin of foxtail millet
To date, many genetic methods, for example, RFLPs [22],

mitochondrial DNA [23], and rDNA [24,25], reveal that foxtail

millet might have multiple centers of origin. Can this hypothesis be

reflected in phytolith morphology?

To answer this question, we dissected the spikelets of modern

foxtail millets that originated in France (W28 and Z169). We

found in VI, VII, and VIII the morphology of undulating patterns

of epidermal long cells in the upper lemmas and paleas of the two

samples was significantly different from millet samples that

originated in China and Eastern Europe (Figure 9). These results

Table 3. Structure matrix and canonical discriminant function
coefficients.

W1-3 W2-3 H-3* Constant

Structure matrix 0.958 0.813 0.638 /

Unstandardized coefficients 0.037 0.270 / 24.925

*This variable not used in the analysis.
doi:10.1371/journal.pone.0019726.t003

Table 4. Classification results of discriminant analysis for VIII
type phytolith.

Groups Predicted group Total

S. italica S. viridis

Original count S. italica 684 188 872

S. viridis 140 467 607

% S. italica 78.4 21.6 100.0

S. viridis 23.1 76.9 100.0

78.4% of foxtail millet and 76.9% of green foxtail are classified accurately.
doi:10.1371/journal.pone.0019726.t004

Phytolith Analysis for Millet and Green Foxtail
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suggest that Western European foxtail millets (W28 and Z169)

have different evolutionary lineages from foxtail millets in Eastern

Europe and East Asia. This primary research can also make a

contribution to the key issue of millet origin. However, in this

study, as samples from Western Europe are few, more foxtail

millets and green foxtails from Europe and China are needed to

substantiate our speculation.

Foxtail millet and green foxtail populations have rich genetic

diversity and worldwide distribution [65–67]. The geographical

diversity within both species was greater than the diversity

between species (S. viridis/S. italica) [22,68,69]. Hence, we

speculate that geographical diversity might cause the morpholog-

ical difference in VIII-type phytolith between East Asian and

Western European foxtail millets. Furthermore, foxtail millet and

green foxtail are in the same family (Poaceae) and genus, and both

have the same number of chromosomes (2n = 18), therefore

hybridization between the two species is easier [28]. During a long

period of natural evolution and domestication, continual hybrid-

ization between local foxtail millet and green foxtail may cause

greater diversity of foxtail millet in different regions. Therefore,

phytolith morphological difference between East Asian and

Western European foxtail millet could become striking.

To eliminate the influence of values from Western European

millets, we recalculated the mean values of W1, W2, and H in type

VIII from foxtail millet and green foxtail and also performed

another discriminant analysis without the foxtail millets W28 and

Z169 from France. We found that the differences between the rest

of the foxtail millets and green foxtails were still remarkable. For

foxtail millet, W1-3, W2-3, and H-3 are about 61.3610.9,

11.262.9, and 25.164.8 mm, respectively, and are still distin-

guishable from green foxtail (52.166.4, 8.061.9 , and

22.162.9 mm). Of the original grouped cases (foxtail millet and

green foxtail), an average of 75.1% were correctly classified. This

result is slightly lower than the first discriminant analysis

(average = 77.7%), because we excluded the values of W1-3,

W2-3, and H-3 in W28 and Z169 from France.

Although the phytolith production patterns revealed by our

preliminary research give encouraging results that millet from

China, Eastern Europe, and Western Europe may be different in

husk phytolith morphology, more research is still needed,

especially for the study of more local species from Europe. To

be of practical use to investigators, further morphometric and

genetic analysis of a wide variety of millet species is required. This

methodology may help to understand foxtail millet domestication

in future work.

Conclusions
Foxtail millet is an important traditional crop in the Far East

and other locations throughout Eurasia. Hence, to discuss its

origin in early dry farming, distinguishing it from green foxtail in

archaeological remains is unavoidable and vital.

In this work, new characters of phytolith identification for husks

of foxtail millet and green foxtail have been developed and

evaluated as a reliable way of separating the two taxa. We

determined that the undulating patterns of VIII epidermal long

cells in the upper lemmas and paleas are meaningful as criteria to

distinguish foxtail millet and green foxtail. The size of single VIII

cells from foxtail millet is larger than comparable cells from green

foxtail. A discriminant function was also established: 78.4% of

foxtail millet and 76.9% of green foxtail of the original grouped

Figure 7. Bivariate biplot of W1-3 and W2-3 values of measurements from epidermal long cells of foxtail millet and green foxtail.
W1-3 = width of undulated patterns of epidermal long cells of VIII; W2-3 = width of epidermal long cells of VIII. Error bar = SD.
doi:10.1371/journal.pone.0019726.g007
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Figure 9. Comparison of undulated patterns of epidermal long cells for foxtail millets from China, East Europe and France. WX(X = 1,
2)-Y: W1 = width of undulated patterns of epidermal long cells; W2 = width of epidermal long cells; Y = 1, 2, 3 =VI, VII and VIII. N = the total number of
data. Error bar = SD.
doi:10.1371/journal.pone.0019726.g009

Figure 8. Papillae distribution on surfaces of the upper lemmas from foxtail millet and green foxtail.
doi:10.1371/journal.pone.0019726.g008
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samples were correctly classified. The result statistically provides a

robust method for distinguishing between these two taxa.

Furthermore, phytolith morphology in upper lemmas and paleas

from Chinese and Eastern European foxtail millets are markedly

different from those of French foxtail millets, possibly suggesting

that foxtail millets in Western Europe have a different evolutionary

lineage from those in East Asia.

This is an attempt to distinguish between silicon structure

patterns in the glumes, lemmas, and paleas occurring in foxtail

millet and green foxtail. Further study is still needed, especially for

morphological comparisons among local species of foxtail millets

and green foxtails. Our results, if supported by additional studies of

phytoliths derived from more millets and related grass species, can

provide a reliable way of separating remains of foxtail millet from

green foxtail based on their phytolith morphology.

Acknowledgments

We thank the Institute of Millet Crops (IMC), Hebei Academy of

Agriculture and Forestry Sciences, Shijiazhuang, China, for providing

modern grass reference samples. We are also indebted to two anonymous

reviewers for their invaluable comments. We thank Ms. Margaret Joyner

from Florida University for her hard work at English improvement of the

first version.

Author Contributions

Conceived and designed the experiments: JZ HL. Performed the

experiments: JZ HL. Analyzed the data: JZ HL NW XY XD. Contributed

reagents/materials/analysis tools: JZ HL NW XY XD. Wrote the paper:

JZ HL NW.

References

1. Bellwood P (2004) First Farmers: The origin of agricultural societies. London:

Blackwell Publishing. 360 p.

2. Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of

rice domestication. Trends Genet 23: 578–587.

3. Fuller DQ (2007) Contrasting patterns in crop domestication and domestication

rates: Recent archaeobotanical insights from the Old World. Ann Bot 100:

903–924.

4. Fuller D, Sato Y-I, Castillo C, Qin L, Weisskopf A, et al. (2010) Consilience of

genetics and archaeobotany in the entangled history of rice. Archaeol Anthropol

Sci 2: 115–131.

5. Hunt HV, Linden MV, Liu XY, Motuzaite-Matuzeviciute G, Colledge S, et al.

(2008) Millets across Eurasia: chronology and context of early records of the

genera Panicum and Setaria from archaeological sites in the Old World. Veg Hist

Archaeobot 17: S5–S18.

6. Barton L, Newsome SD, Chen FH, Wang H, Guilderson TP, et al. (2009)

Agricultural origins and the isotopic identity of domestication in northern China.

Proc Natl Acad Sci U S A 106: 5523–5528.

7. Lee GA, Crawford GW, Liu L, Chen XC (2007) Plants and people from the

early Neolithic to Shang periods in North China. Proc Natl Acad Sci U S A 104:

1087–1092.

8. Bettinger RL, Barton L, Morgan C (2010) The origins of food production in

north China: A different kind of agricultural revolution. Evol Anthropol 19:

9–21.

9. Lu TLD (1999) The Transition from Foraging to Farming and the Origin of

Agriculture in China. Oxford: John and Erica Hedges, Archaeopress in Oxford,

England. 233 p.

10. Lu TLD (2006) The occurrence of cereal cultivation in China. Asian Persp 45:

129–158.

11. Crawford G (1992) Prehistoric plant domestication in East Asia. In: Cowan CW,

Watson PJ, eds. The Origins of Agriculture: An International Perspective.

Washington DC: Smithsonian Institution Press. pp 7–38.

12. Underhill A (1997) Current issues in Chinese Neolithic archaeology. J World

Prehist 11: 103–160.

13. Lu HY, Zhang JP, Liu KB, Wu NQ, Li YM, et al. (2009) Earliest domestication

of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago.

Proc Natl Acad Sci U S A 106: 7367–7372.

14. Zohary D, Hopf M (2000) Domestication of Plants in the Old World: The

Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile

Valley. New York: Oxford University Press. 316 p.

15. Jones M (2004) Between fertile crescents: minor grain crops and agricultural

origins. In: Jones MK, ed. Traces of Ancestry: Studies in Honour of Colin

Renfrew. Cambridge: Oxbow Books. pp 127–135.

16. Shelach G (2000) The earliest Neolithic cultures of Northeast China: Recent

discoveries and new perspectives on the beginning of agriculture. J World Prehist

14: 363–413.

17. Smith BD (1999) The emergence of agriculture. New York: W H Freeman &

Co. 232 p.

18. Sakamoto S (1987) Origin and dispersal of commonm millet and foxtail millet.

Jarq - Jpn Agric Res Q 21: 84–89.

19. Harlan JR (1992) Crops and Man, second edition. Madison: American Society

of Agronomy & Crop Science Society of America. 284 p.

20. Harlan JR (1995) The Living Fields: Our Agricultural Heritage. Cambridge:

Cambridge University Press. 288 p.

21. Hancock JF (2003) Plant Evolution and the Origin of Crop Species. Wallingford,

Oxon: CABI Publishing. 336 p.

22. Fukunaga K, Wang Z, Kato K, Kawase M (2002) Geographical variation of

nuclear genome RFLPs and genetic differentiation in foxtail millet, Setaria italica

(L.) P. Beauv. Genet Resour Crop Evol 49: 95–101.

23. Fukunaga K, Kato K (2003) Mitochondrial DNA variation in foxtail millet,

Setaria italica (L.) P. Beauv. Euphytica 129: 7–13.

24. Benabdelmouna A, Abirached-Darmency M, Darmency H (2001) Phylogenetic

and genomic relationships in Setaria italica and its close relatives based on the

molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S

rDNA genes. Theor Appl Genet 103: 668–677.

25. Fukunaga K, Ichitani K, Kawase M (2006) Phylogenetic analysis of the rDNA

intergenic spacer subrepeats and its implication for the domestication history of

foxtail millet, Setaria italica. Theor Appl Genet 113: 261–269.

26. de Wet JMJ, Oestry-Stidd LL, Cubero JI (1979) Origins and evolution of foxtail

millet (Setaria italica). Journ d’Agric et de Bot 26: 53–64.

27. Harvey EL, Fuller DQ (2005) Investigating crop processing using phytolith

analysis: The example of rice and millets. J Archaeol Sci 32: 739–752.

28. Liu C, Kong Z (2004) The morphyological comparison of grains between foxtail

and broomcorn millets and its application in archaeological remains.

Archaeology 8: 76–83.

29. Nasu H, Momohara A, Yasuda Y, He JJ (2007) The occurrence and

identification of Setaria italica (L.) P. Beauv. (foxtail millet) grains from the

Chengtoushan site (ca. 5800 cal BP) in central China, with reference to the

domestication centrr in Asia. Veg Hist Archaeobot 16: 481–494.

30. Ge W, Liu L, Jin Z (2010) Morphological analyses on starch granules of five

grass species and their significance for archaeology. Quat Sci 30: 377–384.

31. Yang X, Lu H, Liu T, Han J (2005) Micromorphology characteristics of starch

grains from Setaria italica, Panicum miliaceum and S. viridis and its signification for

archaeobotany. Quat Sci 25: 224–227.

32. Yang X, Kong Z, Liu C, Ge Q (2010) Morphological characteristics of starch

grains of millets and their wild relatives in North China. Quat Sci 30: 364–371.

33. Rovner I (1971) Potential of opal phytoliths for use in paleoecological

reconstruction. Quat Res 1: 343–359.

34. Piperno DR (1988) Phytolith Analysis–An Archaeological and Geological

Perspective. San Diego: Academic Press. 280 p.

35. Piperno DR (2006) Phytoliths: A Comprehensive Guide for Archaeologists and

Paleoecologists. Lanham, MD: AltaMira Press. 248 p.

36. Pearsall DM (2000) Paleoethnobotany : A Handbook of procedures, second

edition. San Diego: Academic Press. 700 p.

37. Lu HY, Liu KB (2003) Morphological variations of lobate phytoliths from

grasses in China and the south-eastern United States. Divers Distrib 9: 73–87.

38. Lu H, Yang X, Ye M, Liu K-B, Xia Z, et al. (2005) Millet noodles in Late

Neolithic China. Nature 437: 967–968.

39. Zhao ZJ, Pearsall DM, Benfer RA, Piperno DR (1998) Distinguishing rice (Oryza

sativa Poaceae) from wild Oryza species through phytolith analysis, II: Finalized

method. Econ Bot 52: 134–145.

40. Ball T, Gardner JS, Brotherson JD (1996) Identifying phytoliths produced by the

inflorescence bracts of three species of wheat (Triticum monococcum L., T. dicoccon

Schrank., and T. aestivum L.) using computer-assisted image and statistical

analyses. J Archaeol Sci 23: 619–632.

41. Rosen AM, Weiner S (1994) Identifying ancient irrigation: A new method using

opaline phytoliths from emmer wheat. J Archaeol Sci 21: 125–132.

42. Itzstein-Davey F, Taylor D, Dodson J, Atahan P, Zheng H (2007) Wild and

domesticated forms of rice (Oryza sp.) in early agriculture at Qingpu, lower

Yangtze, China: Evidence from phytoliths. J Archaeol Sci 34: 2101–2108.

43. Piperno DR (1984) A comparison and differentiation of phytoliths from maize

and wild grasses: Use of morphyological criteria. Amer Antiq 49: 361–383.

44. Pearsall DM, Piperno DR, Dinan EH, Umlauf R, Zhao ZJ, et al. (1995)

Distinguishing rice (Oryza-sativa Poaceae) from wild Oryza species through

phytolith analysis–Results of preliminary research. Econ Bot 49: 183–196.

45. Morris LR, Baker FA, Morris C, Ryel RJ (2009) Phytolith types and type-

frequencies in native and introduced species of the sagebrush steppe and pinyon-

juniper woodlands of the Great Basin, USA. Rev Palaeobot Palynol 157:

339–357.

46. Lu H, Liu Z, Wu N, Berne S, Saito Y, et al. (2002) Rice domestication and

climatic change: Phytolith evidence from East China. Boreas 31: 378–385.

Phytolith Analysis for Millet and Green Foxtail

PLoS ONE | www.plosone.org 10 May 2011 | Volume 6 | Issue 5 | e19726



47. Lu H, Zhang J, Wu N, Liu KB, Xu D, et al. (2009) Phytolith analysis for the

discrimination of foxtail millet (Setaria italica) and common millet (Panicum

miliaceum). PLoS ONE 4: e4448.

48. Rosen AM (1992) Preliminary identification of silica skeletons from Near Eastern

archaeological sites: An anatomical approach. In: Rapp GR, Mulholland SC,

eds. Phytolith Systematics:Emerging Issues. New York: Plenum. pp 129–147.

49. Rosen AM (1987) Phytolith studies at Shiqmim. In: Levy TE, ed. Shiqmim. I:

Studies concerning Ghakolithic societies in the Northern Negev Desert, Israel

(1982–1984). Oxford: British Archaeological Reports. pp 243–249.

50. Tubb HJ, Hodson MJ, Hodson GC (1993) The inflorescence papillae of the

Triticeae: A new tool for taxonomic and archaeological research. Ann Bot 72:

537–545.

51. Ball TB, Gardner JS, Anderson N (1999) Identifying inflorescence phytoliths

from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and

T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Gramineae). Am J Bot

86: 1615–1623.

52. Ball TB, Ehlers R, Standing MD (2009) Review of typologic and morphometric

analysis of phytoliths produced by wheat and barley. Breeding Sci 59: 505–512.

53. Parry DW, Hodson MJ (1982) Silica distribution in the caryopsis and

inflorescence bracts of foxtail millet [Setaria italica (L.) Beauv.] and its possible

significance in carcinogenesis. Ann Bot 49: 531–540.

54. Perry CC (2009) An overview of silica in biology: Its chemistry and recent

technological advances. Biosilica in Evolution, Morphogenesis, and Nanobio-

technology: Process in Molecular and Subcelluar Biology 47: 295–313.

55. Mann H, Whitney D (1947) On a test of whether one of two random variables is

stochastically larger than the other. Ann Math Statist 18: 50–60.

56. Kasuya E (2001) Mann-Whitney U test when variances are unequal. Anim

Behav 61: 1247–1249.

57. Rosner B, Grove D (1999) Use of the Mann-Whitney U-test for clustered data.

Stat Med 18: 1387–1400.

58. Ruxton G (2006) The unequal variance t-test is an underused alternative to

Student’s t-test and the Mann-Whitney U test. Behav Ecol 17: 688.
59. Kachigan SK (1991) Multivariate Statistical Analysis: A Conceptual Introduc-

tion. New York: Radius Press. 303 p.

60. Yang XY, Liu CJ, Zhang JP, Yang WZ, Zhang XH, et al. (2009) Plant crop
remains from the outer burial pit of the Han Yangling Mausoleum and their

significance to Early Western Han agriculture. Chin Sci Bull 54: 1738–1743.
61. Sangster AG, Hodson MJ, Parry DW (1983) Silicon deposition and anatomical

studies in the inflorescence bracts of four Phalaris species with their possible

relevance to carcinogenesis. New Phytol 93: 105–122.
62. Harlan JR, de Wet JMJ, Price EG (1973) Comparative evolution of cereals.

Evolution 27: 311–325.
63. Fuller DQ, Harvey E, Qin L (2007) Presumed domestication? Evidence for wild

rice cultivation and domestication in the fifth millennium BC of the Lower
Yangtze region. Antiquity 81: 316–331.

64. Willcox G (2004) Measuring grain size and identifying Near Eastern cereal

domestication: Evidence from the Euphrates valley. J Archaeol Sci 31: 145–150.
65. Le Thierry d’Ennequin M, Panaud O, Toupance B, Sarr A (2000) Assessment of

genetic relationships between Setaria italica and its wild relative S. viridis using
AFLP markers. Theor Appl Genet (TAG) 100: 1061–1066.

66. Schontz D, Rether B (1999) Genetic variability in foxtail millet, Setaria italica (L.)

P. Beauv.: identification and classification of lines with RAPD markers. Plant
Breeding 118: 190–192.

67. Yan H, Li Y, Wang T, Shi Y, Song Y, et al. (2003) Genetic diversity of wild
relatives of foxtail millet distributed in the major foxtail millet production regions

of China. Acta Bot Boreali-Occidential Sinica 23: 926–932.
68. Jusuf M, Pernes J (1985) Genetic variability of foxtail millet (Setaria italica (L.)

Beauv.). Theor Appl Genet 71: 385–391.

69. Wang R, Wendel J, Dekker J (1995) Weedy adaptation in Setaria spp. I. Isozyme
analysis of genetic diversity and population genetic structure in Setaria viridis.

Am J Bot 82: 308–317.

Phytolith Analysis for Millet and Green Foxtail

PLoS ONE | www.plosone.org 11 May 2011 | Volume 6 | Issue 5 | e19726


