贵阳分部广州分部
网站地图联系我们所长信箱建议留言内部网English中国科学院
 
 
首页概况简介机构设置研究队伍科研成果实验观测合作交流研究生教育学会学报图书馆党群工作创新文化科学传播信息公开
  新闻动态
  您现在的位置:首页 > 新闻动态 > 学术前沿
NG:地球自转速率与大氧化事件的潜在联系
2021-11-24 | 作者: | 【 】【打印】【关闭

  地球自转的变化主要分为自转轴瞬时位置(也称为极移)和速率的变化,其中自转速率的变化通常使用日长(一天的时长,即白昼和黑夜总时长)来表示。由于地球自转变化的不规则性,没有一天是标准的24小时 (1)。日长在不同的时间尺度下会表现不同的变化特征,由于日月引力引发的地球上的潮汐摩擦现象造成的地球自转速率长期减速的现象在地质时间尺度上称为潮汐加速效应(Tidal acceleration),这一现象在一些贝壳类化石中已有发现。那么,相对于现今的一天而言,地球在地质历史时期一天时长不足24小时,甚至只有十几个小时;例如有研究认为14亿年前的元古宙中期一天时长约为18小时 (Meyers and Malinverno, 2018) 

1 日长观测时间序列。黑色曲线表示观测值,红色曲线表示长趋势。数据来源于IERS网站(国际地球自转服务)

  在地球早期,大气和海洋中自由氧气的出现进一步促使了需氧生物的进化。微生物产氧光合作用被认为是地球古元古代大氧化事件(Great Oxidation Event, GOE)、元古宙中期持续低氧及新元古代大氧化事件(Neoproterozoic Oxygenation Event, NOE)时期氧气的一个实质来源。这使地球大气氧化程度在时间上呈现显著的阶段性 

  地球表层分阶段氧化的成因机制,仍有较大争议。那么地球自转速率变化与地球大气氧化过程是否以及如何联系呢?研究认为,地质时期地球快速自转状态下,一天时长不足24小时,昼长则不会超过12小时,甚至可能短至6小时 (Bartlett and Stevenson, 2016)。白天时长会影响光照时间,进而影响生物光合作用。基于此种假设,来自德国马克斯普朗克研究所的Klatt及其合作者在Nature Geoscience上发表文章,通过微传感器测量和动力学模型模拟蓝细菌微生物席中界面溶质通量,揭示白昼时长对前寒武纪底栖生态系统的影响。研究结果发现,即使在稳定的光合作用下,白昼时长增加能够提高底栖生物的产氧输出量。他们进一步论证,白昼时长促进有机碳埋藏量的增加,进而可能影响了古元古代和新元古代两次大氧化事件(GOENOE)的发生。该研究成果了揭示了行星自转动力学对地球生物学和地球化学演化的潜在关联机制和影响,为地球系统科学研究提供了新视角。 

  Klatt et al. (2021)首先基于光照动力学和物质扩散运移相互作用关系,通过动力学模拟研究了白昼时长对微生物席代谢产物的输入、输出和累积的影响(2)。模拟结果发现,白昼时长会影响底栖微生物系统的净光合作用和生物质产量,进而影响长期有机碳埋藏速率和大气氧气累积。 

2 白昼时长分别为1224小时状态下总氧气(O2)产量,氧气(O2)和硫化氢(H2S)输出量,Corg 呼吸和埋藏昼夜均值时间演化模拟 (Klatt et al., 2021)。(a)在O225 μM (pO2= 0.1) 的水体下纯OP系统中总OP (∫z OP, 灰色)的深度积分值;(b)有机碳(Corg)埋藏随着白天时长而增加;(c)存在硫还原细菌厌氧呼吸情况下,总光合作用和厌氧呼吸生成的硫化物产量与该模拟中光照动力学无关,O2H2S输出通量受白昼时长调节;(d)白昼时间越长,微生物席输出更多的 O2并储存更多的Corg

  该研究团队进一步证明,相对于栖居者生产的总光合作用量的演化,底栖微生物的栖息地覆盖面积与白昼时长驱动的效应是最相关的(3)除此之外,作者还对类似于元古宙生活环境的现今蓝细菌微生物席进行了实测研究:通过微型传感器观测了光合作用和O2输出速率(4),显示净O2产量与光照时长,即白昼时长呈正相关性。 

3 不同代谢和边界条件下,底栖微生物席昼夜O2输出通量及Corg埋藏通量与白昼时长的关系 (Klatt et al., 2021)。(a)不同昼夜时长下的O2输出通量;(b)不同昼夜时长下Corg埋藏通量

4 不同昼夜时长模拟值下,微生物席样品的微传感器观测情况(Klatt et al., 2021)。(a)微生物席氧气含量垂直剖面,表面光照强度用I表示;(b-e)图a中不同时间点,微生物席O2、总H2S、总光合作用和硫化物产量垂向剖面图;(f)在1224小时昼长差异下,微生物席-水界面附近向底层水体(含1 μM O2、但无H2S)的O2输出通量

  在此基础上,作者进一步将微生物席O2输出通量与白昼时长的模拟和观测关系进行地质历史时期大气增氧模式的推演。基于Bartlett and Stevenson (2016)的假设,由于大气共振效应,大气热潮抵消了海洋和固体潮汐的减速效应,地球自转速率在元古宙处于一个相对稳定期,可与元古宙中期持续低氧状态相吻合。随后,白昼时长的显著增加,可与新元古代大氧化事件相吻合。地球大气氧化样式与自转速率之间存在着显著的相关性,因此可定量评估微生物席产氧、白昼时长、与大气增氧的潜在机制 (5) 

5 白昼时长和大气增氧的关系 (Klatt et al., 2021)。(a)基于经验或者模拟重建的白昼时长的演化特征,其变化趋势与24-5.4亿年(GOENOE)期间大气增氧阶段趋势相对应;(b)全球大气pO2准稳定状态对于白昼时长驱动滨海微生物席和陆地有机碳埋藏通量的变化的响应关系

  该研究从白昼时长、微生物产氧效能、地球大气增氧机制角度,建立了行星自转动力学与地球生物学和地球化学的交叉研究范例,为地球深时环境演化提供了新的研究思路。但是,地球自转速率的变化是依据角动量守恒,需综合考虑地球系统各圈层内部质量再分布、各圈层相对运动以及外部力矩的作用才能准确厘定。文章虽然综合估计了某一物理过程产生的地球自转速率变化,但都不是地球自转速率变化的最终表现 (Lambeck, 1980)。作者假设的不同时段的地球自转变化物理模型也存在一定的问题,目前还没有非常确定的模型来支持地球自转速率会存在阶梯式的变化。此外,地质时间尺度下地球自转速率的测量也存在较大的不确定性。因此,地球大气增氧事件与自转速率变化的可靠关联机制,仍需要进一步深入探讨。 

  (致谢:感谢新生代室周锡强副研究员的宝贵修改建议。) 

  主要参考文献 

  Bartlett B C, Stevenson D J. Analysis of a Precambrian resonance-stabilized day length [J]. Geophysical Research Letters, 2016, 43:5716-5724. 

  Klatt J M, Chennu A, Arbic B K, et al. Possible link between Earth’s rotation rate and oxygenation [J]. Nature Geoscience, 2021, 14:564-570.原文链接 

  Lambeck K. Changes in length-of-day and atmospheric circulation [J]. Nature, 1980, 286:104-105. 

  Lyons T W, Reinhard C T, Planavsky, N J. The rise of oxygen in Earth’s early ocean and atmosphere [J]. Nature, 2014, 506: 307-315. 

  Meyers, S R, Malinverno, A. Proterozoic Milankovitch cycles and the history of the solar system [J]. Proceedings of the National Academy of Sciences, 2018, 115(25): 6363-6368. 

(撰稿:徐长仪/地星室)

 
地址:北京市朝阳区北土城西路19号 邮 编:100029 电话:010-82998001 传真:010-62010846
版权所有© 2009- 中国科学院地质与地球物理研究所 京ICP备05029136号 京公网安备110402500032号