代表性论文:
1. Study on cumulative plastic deformation and resistivity-based damage evolution of frozen soil-rock mixtures under cyclic loading. Soil Dynamics and Earthquake Engineering. 2025, 194, 109374. (SCI收录)
2. Integrated Machine Learning Using Autoencoder and Multilayer Perceptron Approaches to Predict Stress–Strain Curves of Frozen Soil–Rock Mixtures. International Journal of Geomechanics, 2025, 25(10), 10984. (SCI收录)
3. Study on the extension mechanism of fissures in expansive soil based on fracture mechanics test method. Engineering Geology. 2024, 343, 107778. (SCI收录)
4. Study on Strength Damage Model Considering Resistivity and Failure Characteristics of the Frozen Soil-Rock Mixture Under Different Loading Rates. Canadian Geotechnical Journal. 2024,61(9) :1857-1872. (SCI收录)
5. A support vector machine model of landslide susceptibility mapping based on hyperparameter optimization using the Bayesian algorithm: a case study of the highways in the southern Qinghai–Tibet Plateau. Natural Hazards. 2024, 120, 11377-11398. (SCI收录)
6. Ultrasonic properties and damage expression of frozen soil-rock mixture with various block conditions. Environmental Earth Sciences. 2024, 83(12), 376. (SCI收录)
7. Microstructural changes and micro-macro relationships of an intact, compacted and remolded loess for land–creation project from the Loess Plateau. Environmental Earth Sciences. 2021, 80:593. (SCI收录)
8. Microstructural insight into the characteristics and mechanisms of compaction during natural sedimentation and man-made filling on the Loess Plateau. Environmental Earth Sciences. 2021, 80, 668. (SCI收录)
9. A comparative study on the physical properties of natural sedimentary loess and manual filling compacted loess. Environmental Earth Sciences.2021, 80, 721. (SCI收录)
10. Model test study on deformation characteristics of a fissured expansive soil slope subjected to loading and irrigation. Applied Sciences. 2021,11(22), 10891. (SCI收录)
11. Faiure patterns and morphological soil-rock interface characteristics of frozen soil-rock mixtures under compression and tension. Applied Sciences. 2021,11(1),461. (SCI收录)
12. Strain-softening failure mode after the post-peak as a unique mechanism of ruptures in a frozen soil-rock mixture. Engineering Geology. 2020, 274(5). 105725. (SCI收录)
13. Deformation Characteristics of the Shear Zone and Movement of Block Stones in Soil–Rock Mixtures Based on Large-Sized Shear Test. Applied Sciences. 2020, 10(18), 6475. (SCI收录)
14. Three-dimensional pore characterization of intact loess and compacted loess with micron scale computed tomography and mercury intrusion porosimetry. Scientific Report. 2020,10: 8511. (SCI收录)
15. Characteristics of air pollutants and greenhouse gases at a regional background station in southwestern China. AAQR. (SCI收录)
16. Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry, N2 adsoption and NMR methods. Journal of Natural Gas Science and Engineering. 2018,5(53):12-21. (SCI收录)
17. Research on Quantitative Analysis for Nanopore Structure Characteristics of Shale Based on NMR and NMR Cryoporometry. Energy & Fuels,6(31):5844-5853. (SCI收录)
18. Study on Pore Structure Characteristics of Marine and continental shale in China. Journal of Natural Gas Science and Engineering. 2016,33,143-152.(SCI收录)
19. Experimental research on expansion characteristics of Mengzi expansive soil with water, salt and acid immersion. Env. Ear. Sci., 2014 ,72(2): 363-371.(SCI收录)
20. FEM application to loess slope excavation and support: Case study of Dong Loutian coal bunker.2014.Bul. of Eng. Geo. and Env., 2014, 73(4): 1013-1023.(SCI收录)
21. Research on model fitting and strength characteristics of critical state for expansive soil. JCEM. 2013,19(1):9-15.(SCI收录)
22. Research on the deformation characteristics of remolded expansive soil. 11th IAEG 2010. Taylor & Francis Group, London, 2051- 2056.(EI收录)
23. 冻土石混合体、冰石混合物和冻土在压、拉作用下的破坏特征对比. 岩石力学与工程学报,2021年. (EI收录)
24. 基于大型直剪试验的土石混合体剪切带变形特征试验研究. 岩石力学与工程学报,2018, 37(3):766-778. (EI收录)
25. 非饱和膨胀土SWCC研究. 岩土力学,2006,27(5):730-734. (EI收录)
26. 土工格栅在加固高速公路路堤中的试验研究.岩土力学,2008,29(3):795~799. (EI收录)
27. 非饱和土水分特征曲线特性.中国公路学报,2007,20(3): 23~28. (EI收录)
28. 蒙自重塑膨胀土膨胀变形特性与施工控制研究.岩土工程学报,2008,30(12):1855-1860. (EI收录)
29. 阳离子改性剂改良膨胀土试验研究.岩土工程学报,2009,31(7):1094-1098. (EI收录)
30. 膨胀土胀缩变形规律与灾害机理研究.岩土力学,2010,(31)11:270-275. (EI收录)
31. 土石混合体的剪应力波动和跌落行为机制.水文地质工程地质,2021,(48)3:90-101.(核心)
32. 硅酸钠改良水泥基稳定磷石膏在路面基层中的试验研究.工程地质学报,2019,27(1): 80- 87. (核心)
33. 水泥磷石膏稳定材料用于路面基层的探究.公路,2018, 2:189-195. (核心)
34. 二氧化碳致裂信号的反应谱分析.地球科学与环境学报, 2018,40(5):645-651. (核心)
35. 黄土边坡降雨冲刷模型试验研究. 工程地质学报,2018,26(3):732-740. (核心)
36. 土石混填路基现场压实试验及其固结机理研究.工程地质学报,2018,26(2):467-474.
37. 改良黄土强度特性与工程处置试验研究. 工程地质学报,2011,19(1):116-121.
38. 东露天槽仓黄土高边坡开挖支护变形分析.工程地质学报,2013(21)4: 634-640.
39. 非饱和土土水特征曲线测试与预测. 工程地质学报,2007,15(5):700-707.
40. 生态防护在高速公路护坡中的应用研究. 工程地质学报, 2005, 13 (2):280-284.
41. SPA-500型非饱和土水特征与水力参数实验系统的研制.工程地质学报,2012,20: 900-904.
代表性著作:
1. 主编中国公路学会团体标准《公路边坡浅层竹木稳固技术指南》,人民交通出版社股份有限公司,2019,06.
2. 主编河南省地方标准《公路边坡生态防护施工技术指南》,中国标准出版社,2019,06.
3. 主编中国公路学会团体标准《公路水泥稳定磷石膏基层施工技术规范》,人民交通出版社股份有限公司,2023,06.
4. 主编云南省地方标准《高速公路基层磷石膏应用技术规范》(DB53/T 1359-2025),2025,05
5. 参编交通运输部行业标准《路用改性磷石膏》(JT/T1551—2025),2025,03
代表性专利:
1. Construction method for ecologically protecting expansive soil slope by combining phosphogypsum with microbial mineralization. USA Patent. US10913894B1.2021-02-09. 美国专利
2. Construction method for using modified phosphogysum in roadbed and slope. USA Patent No. US10655280B1. 2020-05-19. 美国专利
3. 低温控制条件下大型土工直剪强度测试装置[P].中国专利:ZL2015103618250, 2018-02-13.
4. 一种大尺度土石混合体动剪切强度试验方法[P].中国专利:ZL2015103618049, 2017-12-05
5. 一种磷石膏改良路面基层的设计施工方法[P]. 中国专利:ZL2016109413051, 2019-07-20.
6. 一种公路工程大气环境二氧化碳监测方法[P]. 中国专利:ZL2018111051541,2021-3-30.
7. 一种公路工程大气环境可入肺颗粒物监测方法[P]. 中国专利:ZL2018111051575, 2021-02-05.
8. 一种非饱和土水力参数测定装置[P].中国专利:ZL2009101193570, 2010-8-18.
9. 一种用于膨胀土治理的化学改良方法[P].中国专利: ZL2006101458281,2009-11-20.
10. 一种测试土体非饱和气相渗透系数的方法[P]. 中国专利:ZL2010101681238, 2011-7-20.
11. 一种测定非饱和土土水保持曲线的试验方法[P].中国专利:ZL2010101681045,2011-6-15.
12. 一种错台竹木梯格构梁绿色固坡防护方法[P].中国专利:ZL201210182979X,2014-06-18.