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Allanite is a common accessory mineral that generally incorporates considerable amounts of Th, U and light rare Earth
elements in its structure, making it a useful mineral for in situ U-Th-Pb geochronology and Sm-Nd isotope measurements.
Here, we present in situ U-Th-Pb ages and Sm-Nd isotopic compositions for nine allanite samples considered as potential
reference materials (CAP®, Tara, Daibosatsu, LE40010, LE2808, A007, AO11, AO12 and SQ-51), with ages ranging from
~ 2650 Ma to ~ 12 Ma. Our study indicates that Daibosatsu and LE40010 have relatively homogeneous '*”Sm/'#4Nd
and "*3Nd/"**Nd isotopic compositions ('*”Sm/'“*Nd ratio variation is less than 2%) and, thus, can serve as
primary reference materials for Sm-Nd microanalysis. In contrast, CAP®, Tara, LE2808, AOO7, AO11 and A012 all show
homogeneous calculated initial '#3Nd/'#*Nd isotopic compositions, but with variable '#”Sm/'#*Nd compositions, and
thus can be used only as secondary reference materials for Sm-Nd microanalysis. Of these materials, LE40010 allanite
can serve as a suitable primary reference material for in situ U-Pb dating, CAP® allanite can serve as a suitable primary
reference material for in situ Th-Pb dating, and LE2808, LE40010, AOO7, AO11 and AO12 can serve as suitable
secondary reference materials for in situ U-Pb geochronology. In addition, Daibosatsu is suitable as a secondary reference
material for Cenozoic Th-Pb dating to monitor data reproducibility.
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Allanite, an epidote-group mineral, occurs in igneous,
metamorphic and sedimentary rocks and hydrothermal
systems (Gieré and Sorensen 2004). The general chemical
formula for the epidote-group mineral is ApM3SizO12(OH),
with the A site hosting Ca®*, Sr°*, Pb?*, Mn?*, Th**, U** and
REE®* and the M site being mostly occupied by APY, Fe3*,
Fe?*, Mn®*, Mn?*, Mg?*, Cr** and V** (Dollase 1971,
Gieré and Sorensen 2004). Allanite has high contents of LREE
(light rare earth elements), Th and U, which render it suitable
for U-Th-Pb dating and Nd isotope measurement.

Accessory minerals record important petrological infor-
mation that improve our knowledge of magmatic processes
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(Wones 1989, Robinson and Miller 1999, Schaltegger and
Davies 2017). Allanite is a common accessory mineral in
intermediate and acid magmatic rocks and forms solid
solutions with epidote and clinozoisite (Gromet and Silver
1983, Petrik et al. 1995, Gieré and Sorensen 2004, Oberli
et al. 2004, Beard et al. 2006, Cox et al. 2012). Allanite
has been used as an indicator of oxygen fugacity (Gu
1989), as a monitor for the degree of magmatic crystalli-
sation and fractionation (Barth et al 1989, Oberli et al.
2004, Gregory et al. 2012), to constrain the age of igneous
intrusions (Catlos et al 2000, Spurgin et al 2009, Gregory
et al 2012, Walters et al. 2013, Searle et al 2016, Guo
et al. 2014, 2017) and to determine the age of volcanic
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events (Cox et al. 2012). Metamorphic allanite grains grow
at P-T conditions that range from lower greenschist and
amphibolite facies to high pressure and ultra-high pressure
ec|ogite facies (Hermann 2002, Wing et al 2003, Romer
and Xiao 2005, Parrish et al 2006, Smye et al 2011,
Thakur et al 2018) and can be used to date a range of
protoliths at variable metamorphic conditions (Janots et al
2009, Rubatto et al 2011, Smye et al 2011, Vonlanthen
et al. 2012, Boston et al. 2017, Engi 2017). Whole rock
CaO and LREE contents control the stability of allanite during
prograde stages of mefamorphism (Wing et al 2003,
Janots et al. 2009, 2012). In particular, Ca is known to
destabilise monazite to form allanite (Lee and Bastron 1967,
Montel 1993). Allanite is the main carrier of LREE and Th in
subduction zones and controls the redistribution of REE
during subduction of continental rocks (Bea 1996, Hermann
2002, Spandler et al. 2003, Klimm et al 2008, Rubatto
et al 2011, Soder and Romer 2018). Furthermore, allanite
has been reported to occur in hydrothermal systems,
especially skam and IOCG (iron-oxide copper gold)
deposits (Oliver et al 1999, Chen and Zhou 2014, Deng
etal 2014, Fu et al 2017, Li et al. 2018). By combining
trace element data, isotopic analyses (in particular Nd and
Sr) and U-Th-Pb dating of allanite, we can potentially and
directly constrain the source of oreforming materials, the
properties of the oreforming fluid and the fiming of
mineralisation (Gieré 1986, Oliver et al. 1999, Smith et al.
2009, Li et al 2010, 2015, 2018, Chen and Zhou 2014,
Deng et al. 2014, Zhu et al. 2015, Fu et al 2017).

U-Th-Pb ages and Sm-Nd isotopic data can be
obtained using traditional isotope dilution thermal ionisation
mass spectrometry (ID-TIMS) methods, which is the bench-
mark technique for U-Th-Pb and Sm-Nd isotope analysis.
However, bulk analysis of single crystals can obscure
information in natural allanite that may have complex
chemical and isotopic zonation (Catlos et al. 2000, Cox
et al. 2003, Romer and Xiao 2005, Rubatto et al 2011).
Previous studies mainly concentrated on development of
protocols for in situ allanite geochronology by SIMS (Catlos
et al. 2000, Gregory et al. 2007, Lico et al. 2020) and LA-
ICP-MS (Cox et al. 2003, Gregory et al. 2007, Darling et al.
2012, Korh 2014, McFarlane 2016, Bum et al 2017). LA-
ICP-MS U-Th-Pb dating is widely employed due to its good
spatial resolution (usually ~ 10-50 pm), adequate precision
(typically < 3% on individual 2°®Pb/?*8U and 2°®Pb/?*Th
measurements), rapid analysis (in the order of several
minutes per spot) and low cost compared with other
microanalytical techniques (e.g, SIMS; Catlos et al. 2000,
Gregory et al. 2007, Liao et al 2020). In situ Sm-Nd isotope
measurement by laser ablation multi-collector (MC) ICP-MS
has been shown to be feasible for allanite and other LREE-

enriched accessory minerals (Foster and Vance 2006,
McFarlane and McCulloch 2007, Yang et al 2008,
Gregory et al. 2009, Fisher et al 2011). A growing number
of studies in situ Sm-Nd isotope measurement of allanite
demonstrate the wide application and significance of this
mineral (Spandler et al 2018, Hammerli et al 2019, Su
et al 2021).

There are numerous well-characterised zircon, mon-
azite, apatite and titanite reference materials available for
U-Pb, Hf, Sr and/or Nd isotopic analysis (Wiedenbeck et al
2004, Wu et al 2006, Sléma et al 2008, Fisher et al
2011, lizuka et al 2011, Liv et al 2012, Yang et al 2014,
2019, Li etal 2015, Spandler etal 2016, Ma et al
2019). In contrast, there are only a few established allanite
reference materials available for U-Th-Pb dating or for data
quality control in Sm-Nd isotope analysis (e.g, Tara, CAP,
AVC, LE40010, LE2808, Siss and Bona for U-Th-Pb dating
(Gregory et al 2007, Smye et al 2014, Bum et al. 2017,
lico etal 2020) and Daibosatsu for Sm-Nd isotopic
analysis (McFarlane and McCulloch 2007, 2008). Despite
the advent of high throughput in situ analytical methods,
allanite geochronology reference materials are in short
supply. Furthermore, growing application of in situ allanite
Sm-Nd isotope analysis by LAMC-ICP-MS brings about a
need for a range of homogeneous Sm-Nd reference
materials. For most available allanite reference materials,
the Nd isotopic composition has not been reported.
McFarane and McCulloch (2007, 2008) reported the first
LA-MCHCP-MS Sm-Nd isotope data for the allanite sample
Daibosatsu ('*Sm/"*Nd and "**Nd/'**Nd are 0.0825
and 0.512568 respectively). Their result was confirmed by
ID-TIMS and other laser ablation studies (Fisher et al. 2011,
Hammerli et al 2014, 2019, Spandler et al 2018).
Among established allanite  reference  materials  for
geochronology, the Sm-Nd isotopic composition of Siss
allanite was studied by in situ methods. Siss allanite,
however, has variable Sm-Nd isotope composition (Gre-
gory etal 2009), in line with the results of ID-TIMS
analyses (von Blanckenburg 1992).

The main purpose of this study is to test potential allanite
reference  materials (CAP®, Tara, Daibosatsu, LE40010,
LE2808, A007, AO11, A012 and SQ-51) for in situ Sm-
Nd isotope analysis and U-Th-Pb dating and, thereby, to
establish a suite of well-characterised allanite minerals that
will be made available to the geochemical community.

Allanite samples

Allanite samples, with ages ranging from ca. 2650 fo ca.
12 Ma, from nine different areas were investigated. Brief

170 © 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts



information on the investigated allanite samples is given in
Table 1.

Tara

The Tara allanite was collected from a granodiorite of the
Berridale Batholith, southeast Australia, and was described
by Gregory et al. (2007), and further characterised by Smye
et al (2014). The dark brown and vitreous allanite grains are
100-300 um in size and show only minor compositional
variation. Alterations and inclusions are rare in our imagery
(Figure 1b), but observed and described by Smye et al
(2014), including the presence of thorite. Gregory et al
(2007) presented SHRIMP and LAICP-MS analysis of the
Tara allanite, yielding a weighted mean 2°%Pb/?32Th age of
4149 + 33 Ma and single-spot mean 2°8Pb/?32Th age of
417.5 £ 1.4 Ma respectively. The SHRIMP analysis gave a
mean 2°°Pb/?38 age of 419.3 + 7.7 Ma. These ages are
in good agreement with the Tara zrcon age of
4187 + 42 Ma determined by U-Pb SHRIMP analysis
(Ickert and Williams 2011), and thus, Tara was proposed
as a suitable RM for U-Th-Pb geochronology by Gregory
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et al (2007). Subsequent studies have largely reproduced
the age of Tara allanite (Darling et al. 2012, Smye et al.
2014, Bum et al 2017). The U-Pb ID-TIMS data obtained by
Smye et al (2014) show a large age variation (440-
400 Ma) possibly caused by later hydrothermal alteration.
Following characterisation of individual grains using SEM
imagery, it was concluded that Tara allanite can potentially
serve as a reference material for U-Th-Pb ddfing (Smye et al

2014, Bum et al. 2017).
CAPP

The CAP® allanite sample studied here is the same
sample studied by Burn et al (2017) and was collected from
the same location as the CAP allanite. The CAP allanite
originates from the Permian Cima D'Asta pluton, northem
ltaly, and was first dated by Barth et al. (1994) by Th-Pb ID-
TIMS, yielding a weighted mean 2°®Pb/?*?Th age of
275 4 1.5 Ma (25, n = 4). Even though the pluton had
been overprinted by Triassic regional hydrothermal alter-
ation, the Th-Pb system of CAP® llanite apparently remained
unaffected. SIMS (Catlos et al. 2000, Gregory et al. 2007,

Table 1.
Summary information of allanite samples investigated in this study
Sample Location Reference age (Ma) Reference 143Nd/144Nd (25) Reference
Tara Berridale Batholith, 4149 + 33! Gregory et al. (2007) No reference value
southeast Australia 4144 + 647
4113 + 142 Bum et al. (2017)
4163 £ 192 Darling et al. (2012)
440-400° Smye et al. (2014)
capP Permian Cima D'Asta 2750 + 1.5° Barth et al (1994)
pluton, northern ltaly 2750 + 43" Lico et al. (2020)
Daibosatsu | Daibosatsu Pass, 11.5 £ 02! Lico et al. (2020) 0.512560 (10)* McFarlane and
Yamanashi, Japan McCulloch (2007)
0.512599 (13)° Fisher et al. (2011)
0512578 (26)° Fisher et al. (2011)
0512597 (12)° Spandler et al. (2018)
0.512578 (9)° Hammerli et al. (2019)
LE40010 Fiskencesset anorthosite | 2646 + 943 Smye et al. (2014) No reference value
complex, western
Greenland.
LE2808 Unknown 1060-1100° Smye et al. (2014)
A007 Riddarhyttan area of No reference value
Bergslagen, Sweden
AOT1 Pacoima Canyon 1006 + 37' Catlos et al. (2000)
pegmatite, southem
California (USA)
A012 GroBhartmannsdorf, No reference value
Saxony, Germany
SQ-51 Sin Quyen Fe-Cu-REE-Au- | 778.3 + 9.2 Lico et al. (2020)
(U) deposit, north- 822-831"
western Vietnam

These reference values were reported by previous studies and obtained by using 'SIMS, 2LAJICP-MS, 3ID-TIMS, “solution-based MC-ICP-MS and SLA-MC-ICP-

MS.
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Figure 1. Representative back-scattered electron (BSE) images. Yellow dashed circles represent laser pits. Ab, albite;

Ep, epidote; Mnz, monazite; Py, pyrite; Qtz, quartz; Wo, wollastonite.

Lico et al. 2020) and LAICP-MS (Bumn et al. 2017) dating
results of CAP® allanite reproduced the TIMS age within
uncertainty. The 2°”Pb-corrected 2%°Pb/?28U results obtained
via SIMS (Gregory et al 2007), however, show more scatter
and discordance compared with the 2%8Pb/232Th ages.

Daibosatsu

The Daibosatsu allanite originates from a ca. 13 Ma
granitic pegmatite at Daibosatsu Pass, Yamanashi, Japan
(Hoshino et al. 2005). The allanite crystals are dark brown,
vitreous and vary in size. The grains have a homogeneous
major element distribution (Hoshino et al 2005). SIMS
analysis of Daibosatsu allanite gave a weighted mean
208p} /232Th age of 11.5 + 0.2 Ma and a Tera-Wasserburg
intercept age of 9.3 + 3.0 Ma (Lico et al. 2020). McFarlane
and McCulloch (2007, 2008) reported solution MC-ICP-MS
"3Nd/'*Nd  data for the Daibosatsu  allanite  of
0512559 + 0000010 and 0512560 £ 0.000010,
which is in good agreement with the in situ '“3Nd/"**Nd

data  of 0512564 +£ 0000008 (25, n=25) aond
0.512568 + 0000010 (25, n = 4). Fisher et al (2011)
measured the Nd isotopic composition of Daibosatsu allanite
using ID-TIMS and  LAICP-MS and obtained mean
147Sm/1Nd and  "**Nd/'*Nd rafios of 00767 +
00037 (25, n=8) and 0512599 £ 0000013
(2s, n = 8), respectively, for ID-TIMS, and 0.0790 + 0.0055
(25, n = 20) 0.512578 4+ 0000026 (25, n = 66), respec-
tively, for LAAMC-ICP-MS. The mean eng(t) value is -1.3 + 0.2
(McFarane and McCulloch 2007). Later, Spandler et al.
(2018) and Hammerli et al (2019) used Daobosatsu allanite
as secondary reference material and reported '“3*Nd/'*Nd
data of 0512597 4 0000012 (2s, n=38) and
0512578 4+ 0000009 (25, n = 3) respectively.

LE40010

Allanite LE40010 was previously investigated by Smye
et al (2014). This dllanite is a megacryst collected from a
quartz pegmatite from the late Archaean Fiskenaesset
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anorthosite complex, western Greenland. The previous study
showed that the U-Pb systematics of LE40010 exhibits scatter
and vyields sub-concordant apparent U-Pb ID-TIMS ages
ranging from 2750 to 2600 Ma. The ?%Pb/?**U data
scatter less and yield a mean age of 2646 + 94 Ma. For
comparison, the mean 206p}, /238 ageis 2735 £ 226 Ma
(Smye et al 2014).

LE2808

Allanite LE2808 is a megacryst from a pegmatite and
has been studied by Smye et al (2014). See Smye et al
(2014) for geological background information available for
this allanite sample. Similar to LE40010, this crystal experi-
enced hydrothermal alteration. Allanite LE2808  exhibits
extreme discordance between apparent 2%8U/2%°Ph and
232Th/298pl ages; in particular, the 2°Pb/?%°Th results
were highly scattered. Common Pb corrected 2°°Pb/?28U
and ?%Pb/?33U ages range between 1060 and 1100 Ma
(Smye et al 2014).

A007

Sample AO07 was collected from the Bastnés-type REE
deposit in the Riddarhyttan area of Bergslagen, Sweden.
Bastnés-type mineralisation has been described by Holtstam
et al (2014) and Linders (2016). The main ore-bearing units in
the Bergslagen ore district are rhyolitic to rhyodacitic, alkali-rich
metavolcanic rocks (Stephens and Jansson 2020). Magmatic
activity with associated mineralisation started at ~ 1.9 Ga.
Molybdenite Re-Os ages obtained from Bastnéis-type deposits
ranges from 1900 to 1840 Ma (Holistam et al 2014).

AO11

The Pacoima Canyon pegmatite, southern California
(USA), is known as ‘allanite pegmatite’ (Silver et al 1963).
Allanite AO11 was sampled from this pegmatite. The U-Pb ID-
TIMS zircon age of the pegmatite is 1190 Ma (Silver et al
1963, Barth et al 1995). Catlos et al (2000) presented an
in situ Th-Pb ion-microprobe age of 1006 + 37 Ma (1s; two
spots on one grain) for allanite from the Pacoima Canyon
pegmatite. Their age is disfinctly younger than the age
reported by Silver et al (1963) and Barth et al (1995).
Catlos et al (2000) interpreted the age discrepancy to reflect
Pb diffusion in allanite during the cooling of the pegmatite.

AO12

Sample AO12 was collected from GroBhartmannsdor,
Saxony, Germany. Regionally, the sample location lies within that
part of the Saxo-Thuringian Zone, that is the Erzgebirge that
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experienced medium- to high-grade metamorphism during the
Variscan orogeny. The Erzgebirge represents a stack of mefa-
morphic nappes of crustal rocks that have reached medium to
high and ultra-high pressure conditions at ~ 340 Ma and that
were sfacked and exhumed within a few millions of years (Rétzler
and Plessen 2010, Kroner and Romer 2013). The nappes were
in the upper crust when they were infruded by 327 Ma old and
younger granites (Férster and Romer 2010).

SQ-51

SQ-51 allanite was collected from the Sin Quyen Fe-Cu-
REE-Au-(U) deposit, which is hosted in the Phan Si Pan belt of
north-western Vietnam. The Phan Si Pan belt consists of a
metamorphic complex intruded by Neoproterozoic igneous
rocks (Gaskov et al. 2012, Zhu et al. 2015). The deposit
contains abundant Fe, Cu and REE, associated with
subordinate Au and U, and is hosted in Proterozoic
metapelites. The age of the massive and banded replace-
ment ores is bracketed by the ages of hydrothermal zircon
and monazite and a post-mineralisation granific dyke (Li
et al. 2018). Hydrothermal zircon and monazite yield
841 £ 12 and
836 & 18 Ma, respectively, whereas zircon from the

indistinguishable  U-Pb ages  of

granitic dyke yields a weighted mean 2°°Pb/238U age of
736 £ 7 Ma (i et al 2018). Allanite from this deposit gave
two SIMS U-Pb ages of ca. 780 Ma and ca. 830 Ma (Liao
et al. 2020).

Analytical methods

All allanite samples were separated using a Frantz
magnetic separator and were concentrated using heavy
liquids. They were then selected by hand picking under a
binocular microscope. Some separated grains were embed-
ded in a 1-inch epoxy mount, sectioned to expose their interior,
polished and mapped by optical microscopy. Chemical and
isotopic_homogeneity was investigated by electron probe
microona|ysis (EPMA) and laser ablation ICP-MS (LA-ICP-MS)
analyses, respectively, atthe State Key Laboratory of Lithospheric
Evolution, Institute of Geology and Geophysics, Chinese
Academy of Sciences IGGCAS). Some relatively homogeneous
samples were selected for U-Pb ID-TIMS analysis at the Jack
Satterly Geochronology Laboratory, Department of Earth
Sciences, University of Toronto, Canada and at GFZ German

Research Centre for Geosciences, Germany.
Chemical characterisation
Electron probe microanalysis: Backscattered electron

(BSE) imaging of allanite was complefed using a Nova
NanoSEM 450 field-emission scanning electron microscope
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(FSEM) and a JEOL JXA8300 Electron Microprobe to
characterise intemal structures and mineral inclusions.
Quantitative maijor element analysis of allanite minerals
was performed on a CAMECA SX Five Electron Microprobe
housed at Electron Microprobe and Scanning Electron
Microscope Laboratory, IGGCAS, Beijing. The operating
conditions for the CAMECA SX Five were a 3 x 10% A
beam current, 15 kV acceleration vo|foge and 5 um beam
size. The peok counting time was 20 s for all elements, and
the background counting fime was 10 s on the high- and
low-energy background positions. Natural minerals, synthetic

oxides ono| glOSSGS were Useo| as reference moferio|s.
Isotopic characterisation

U-Pb ID-TIMS datfing: U-Pb ID-TIMS analyses of allan-
ite were conducted at the Jack Satterly Geochronology
Laboratory, Department of Earth Sciences, University of
Toronto (Canada) and at GFZ German Research Centre
for Geosciences, Potsdam (Germany).

Samples AO07, AOT1 and AO12 were analysed af the
Jack Satterly Geochronology Laboratory (JSGL). All grains
were washed in nitric acid at room temperature, and loaded
into PTFE dissolution capsules with ~ 120 ul 50% HF and
~ 20 ul HNO3; mixed with a 2°°Pb—?3°U isotopic tracer
solution. Grains were dissolved in an oven at 195 °C for
~ 4 days. Samples were dried to a precipitate and re-
dissolved in ~ 0.15 ml 3.1 mol I'" HCl at 195 °C ovemight
prior to loading into anion exchange columns (Krogh 1973).
An HBr chemical separation procedure was performed to
isolate Pb and U, which was evaporated to a small droplet
in H3PO4 and loaded onto outgassed Re filaments with
silica gel (Gerstenberger and Haase 1997). Uranium and
Pb were determined with a VG354 mass spectrometer using
either a Daly detector in pulse counting dynamic mode, or in
multiple Faraday cups in static measurement mode with
204Pl in the axial Daly detector. For data acquisition, either
VG Sector software or an in-house Visual Basic program was
used. The 2%°Pb/?8U and ?%"Pb/?%°Pb ratios and appar-
ent ages were corrected for initial 230Th disequilibrium
assuming a Th/U ratio in the magma of 4.2. Procedural
blanks were assumed to be 1 pg Pb and 0.1 pg U. Initial
common Pb was corrected using the Pb evolution model of
Stacey and Kramers (1975). The mass discrimination
correction for the Daly detector is constant at 0.05% per
atomic mass unit. Amplifier gains and Daly characteristics
were monifored using the SRM 982 Pb reference material.
Decay constants are those of Joﬁey etal (1971) and
recommended by UGS (Hiess et al 2012): A?%8U =

155125 x 107'° year'; A%%°U = 9.8485 x 10 year’;
238)/23%U = 137.818. UPb data reduction and age

calculations were performed using an in-house Visual Basic
programs written by DW. Davis. All age uncertainties quoted
in the text and tables, and ellipses in concordia diagrams
are given at the 95% confidence level. Plotting and
discordia calculation were conducted using Isoplot 3.0

(Ludwig 2003).

Sample AOO7 was also analysed at the GFZ German
Research Centre for Geosciences, Potsdam (GFZ). To remove
surface contamination, the samples were rinsed in warm
1 mol ' HNO3 for 30 min, and then, the samples were
rinsed with H,O and acefone. A mixed 2°°Pb-23°U tracer
was added before sample dissolution. The samples were
dissolved in 40% HF on a hotplate at 160 °C for three days.
The U and Pb separation was adapted from the HB-HCI
analytical procedure described in Romer and Luders (2006).
Uranium and Pb were loaded with H3PO4 and silica gel on
the same Re filaments. The isotopic ratios of U and Pb were
measured using a Triton TIMS instrument operated in sfafic
or dynamic multi-collection mode using Faraday collectors
and an ion counter, depending on the signal intensity. Lead
was analysed at 1200-1260 °C and U at 1360-1430 °C.
Data reduction followed the procedures described by
Schmid et al (2003). Initial 2%®Pb/?°*Pb ratio was estimated
using the typical Pb isotopic compositions of Svecofennian
massif sulphide ores (Romer and Wright 1993). The initial
207p/2%4ph was estimated using the 2%Pb/?%*Pb vs.
20pb/294ply diagram. Uncertainties in tables and the fext
are given at the 95% confidence level Assuming the
procedural blank for Pb and U are 15 pg and 1 pg
respectively. The data were plotted using Isoplot 3.0 (Ludwig
2003).

In situ trace element and U-Th-Pb age determina-
tions: Trace element contents and U-Th-Pb ages were
determined using an Agilent 7500a quadrupole (Q)-ICP-
MS instrument coupled to a 193 nm Arf excimer laser
ablation systems or a 257 nm Yb diode femtosecond laser
ablation system housed at IGGCAS, Beijing, China. Geolas
HD (Coherent, Gottingen, Germany) and NWRFemto"“
(Electro Scientific Industries, Portland, United States) laser
ablation systems were used in this study. Detailed information
on Geolas HD and NWRFemto“ is presented in Wu et al.
(2020).

The Pu|se/Ano|ogue (P/A) factor of the detector was
calibrated using a standard tuning solution before conduct-
ing the experiments. During laser ablation, the instrument
was optimised using NIST SRM 610 glass reference
material. Helium was used as the carrier gas and mixed
with argon prior to entering the ICP torch. The parameters of
the two gases were optimised to obtain stable maximum
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signal infensity for 238U

, while suppressing oxide formation
and |imiﬁng fractionation between U and Th, which were
monitored using ThO*/Th* (< 0.5%) and Th/U ratio (fo
approximately 1). Detailed parameter seftings are presented
in Table 2. Afluence of ~ 5 J cm™, spot size of ~ 40-60 um
and repetition rate of 8 Hz were used for measurement. All
LAICP-MS measurements were carried out using time-
resolved analysis in fast, peak jumping mode. The dwell
time for each isotope was set at 6 ms for 43Ca, 4(;Ti, 55I\/\n,
85Rb, 885y, 8% 727 1784f and REE, 10 ms for 2°?Th and
2380, 15 ms for 29*Pb, 2%°Pb and 2°®Pb, and 30 ms for
207Pp, Each spot analysis consists of an approximate 30 s
background and a 60 s sample data acquisition. A matrix-
matched allanite reference material (Tara) was used as the
primarry correct  2%7Pb/?%%P,

reference materials  to

Table 3.

20%Pb/?%8U, 2YPb/?*°U (*28U/?%°U = 137.818) (Hiess
et al. 2012) and 2°®Pb/?*?Th ratios. CAP® (275 Ma; Barth
et al 1994) and Daibosatsu (11.5 Ma; Lico et al. 2020)
were used as secondary reference materials to monitor data
reproducibility. Trace element mass fractions were calibrated
using Si as the infemal standard element (SiO, contents
were measured previously by EPMA) and using NIST SRM
610 (Jochum et al 2011) as the primary reference material
and NIST SRM 612 (Jochum et al 2011) for data monitor-
ing. Isotopic and elemental fractionation plus instrumental
mass bias were corrected for using Glitter 4.0 sofware
(Griffin et al 2008). Signo| sections of each analysis were
selected independently to obtain similar intervals for refer-
ence materials and unknowns. The relative standard devi-

ation of reference values for Tara allanite was set at 2%. The

Typical instrument parameters for U-Pb dating, trace element and Sm-Nd isotopic measurement

Laser ablation systems

Coherent Geolas HD

NWRFemto"¢

Laser system
Ablation cell and volume

ComPex 102, ArF excimer UV 193 nm
Standard barrel cell, volume ca. 4 cm®

Yb diode femtosecond laser ablation system, 257 nm
Two volume cell

Fluence

~ 5J em2 for trace elements and U-Pb dating, ~ 6 J cm2 for Sm-Nd isotope measurement

Repetition rate 8 Hz

Spot diameter nominal

40 pm for trace elements and U-Pb dating, 24-32 pm for Sm-Nd isotope measurement

Ablation duration

60 s for trace elements and U-Pb dating, 60 s for Sm-Nd isotope measurement

Sampling mode Static spot ablation

Sample preparation

Conventional mineral separation, 1 inch resin mount

Mass spectrometers Thermo Fisher Neptune

Agilent 7500a Q-ICP-MS

MC-ICP-MS
RF forward power ~ 1300 W ~ 1350 W
Carrier gas flow ~ 1.1 | min™ ~ 1.1 | min’!
Cool gas 16 | min™! Sample depth ~ 4.5 mm
Auxiliary gas 0.8 | min™! Interface cone Ni
N, gas flow 4 ml min”!

Sampling cone Ni, aperture 1.0 mm

Skimmer cone Ni, aperture 0.8 mm
9 blocks of 8 cycles for Nd (solution)

1 block of 40 cycles for Sm (solution)

Sampling mode

15 ms for 2°4Pb, 2°%Ph and 2°8pb,
30 ms for 2%7Pb, 10 ms for 232Th
and 228U, 6 ms for other elements

90 s (including 30 s background),

Dwell times

Analysis duration

1 block of 200 cycles (laser) 60 s ablation
Integration time 4 s for Nd (solution)

2 s for Sm (solution)

0.262 s (laser)
Background/baseline 30 s on peak zero (OPZ)
MC-ICP-MS cup configuration
Faraday L4 L3 L2 L1 Centre H1 H2 H3 H4
cup
Nominal mass | 142 143 144 145 146 147 148 149 150
Nd+ 142Nd+ 143Nd+ 144Nd+ 145Nd+ 146Nd+ 148Nd+ 150Nd+
[Ce*, Sm*] 142Ce+ 144Sm+ 147Sm+ 1485m+ 1495m+ 1505m+
© 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts 177
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mode of data reduction depended on the common Pb
composifion, Th contents and the age of the analytical
sample: (1) Samples with significant common Pb are
reported as intercept dates in the Tera-Wasserburg diagram
(all intercept ages in this study are derived from isochrons on
a Tera-Wasserburg diagram unless otherwise ~stated.).
Additionally, the weighted 2°°Pb/?%8U and 2%®Pb/?32Th
mean dates were calculated using a 2%7Pb correction of
common Pb, assuming a common Pb composition corre-
sponding to the two-stage crustal Pb model of Stacey and
Kramers (1975). (2) The Cenozoic sample with signiﬁconf
common Pb and considerable excess “°Pb is only reported
as a weighted 2°®Pb/?*?Th mean age calculated using the
207Pb correction of common Pb, assuming a common Pb
composition corresponding to the two-stage crustal Pb
model of Stacey and Kramers (1975). Detailed data
reduction methods can be found in Yang et al (2014,
2019) and Lico et al (2020). Uncertainties in tables and the
text are given at the 95% confidence level. The additional
systematic uncertainties were propagated onto the final
ages following Horstwood et al (2016) include the uncer-
tainty of the common Pb composition, the decay constant
uncertainty, the reference material  uncertainty and
laboratory-based long-term over-dispersion of the method
(~ 2%). Age uncertainties quoted as age + x/y, where x is
without systematic uncertainties, and y is with systematic
uncertainties. The U-Th-Pb ages and weighted mean ages
were calculated using the ISOPLOT 3.0 sofiware package
(Ludwig 2003).

In situ Sm-Nd isotope determination: All in situ iso-
tope measurements for this study were carried out at the
IGGCAS using a Thermo Scientific Neptune Plus MC-ICP-MS
coupled to a 193 nm excimer laser system. Detailed
instrument and analysis conditions are presented in Table 2.
Prior to analysis, the instrument was tuned and optimised for
maximum sensitivity using JNdi-1 standard solution. The laser
fluence was set to ~ 6 J em™ with a 4 Hz laser repetition
rate and ~ 24-32 pm beam diameter, depending on the
Nd mass fraction of the samples. Each spot analysis
consisted of approximately 30 s baseline acquisition and
60 s data acquisition (Yang et al. 2008, Ma et al. 2019).
Every ten sample analyses were followed by two analyses
each of Daibosatsu ('*/Sm/'*“Nd = 00767 + 00037,
"3Nd/Nd = 0511599 + 0000013,  Fisher et al
2011) and Tara allanite (ho previously published ratios
available) for external calibration and data monitoring.

To obtain accurate '#/Sm/"*Nd and "*3Nd/'#“Nd
isotope ratios using LAMCHCP-MS, the contribution of the
isobaric inferference of '*“Sm on the '**Nd signal must be
corefu”y corrected (Foster and Vance 2006, McFarlane and

McCulloch 2007, 2008, Yang et al. 2008, 2009, Fisher
et al 2011). In natural allanite, Sm/Nd generally ranges
from 005 to 0.2, so '**Sm can contribute ~ 2-6% to the
measured  '**Nd sign0|. In  this sfudy, we used
1475m/19Sm = 1.08680, '*“Sm/'*Sm = 022332 and
146N/ **Nd = 07219 (O'Nions ef al 1977, Dubois
etal 1992, lsnard etal 2005). The

1478m/1%Sm ratio was used to calculate the Sm fraction-

measured

afion factor using the exponential law. The measured '47Sm
infensity was used to estimate the Sm interference on mass
144 by employing the natural '#Sm/'*4Sm ratio of
4866559 (lsnard et al 2005). In a second step, the
interference-corrected  '“°Nd/'**Nd ratic was used to
calculate  the Nd  fractionation  factor.  Finally, the
"3Nd/TNd and "*°Nd/'**Nd ratios were normalised
using the exponential law. True '*’Sm/'*“Nd ratios were
calculated using the exponential law after correcting for the
isobaric inferference of '*“Sm on '**Nd. The '*/Sm/'**Nd
ratio was extemally calibrated against the '*”Sm/'*Nd
ratio in the allanite reference material analysed during the
same session (Yang et al. 2013, 2014, Lin et al. 2016). The
145Nd/"**Nd value was also used as data quality control
during the measurement (reference value '**Nd/'**Nd =
0.348415 + 0000007, Wasserburg et al. 1981). System-
afic uncertainties were propagated into  the final
147Sm/14Nd and "**Nd/'**Nd ratios. Long-term mea-
surement uncertainty of '/Sm/'*Nd and '**Nd/'*“Nd
ratios were assumed to be at the 0.02% level (Goncalves
et al 2018). The raw data were exported offline, and the
whole data reduction was performed using a Microsoft Excel

macro.

Solution Sm-Nd isotope measurement: All chemical
preparation of allanite was undertaken on class 100
workbenches inside a class 1000 clean laboratory. Individ-
val allanite crystal chips were washed in an ultrasonic bath
in 2% HNOg3 for 15 min, then rinsed several times with high-
purity (Milli-Q) HoO (resistivity: 18.2 MQ cm at 25 °C) from
Millipore (USA) and finally dried. Approximately 20-30 mg
of allanite crystals was weighed into a 7 ml round bottom
Savillex™ Teflon/PTFE screw top capsule. Each aliquot was
spiked with a weighed '?Sm-""°Nd enriched tracer and
then digested using 0.1 ml concentrated HCIO4 and 1 ml
concentrated HF. Neodymium and Sm were separated from
matrix elements using a single stage TODGA resin (2 ml,
100-200 mesh). Detailed sample digestion and separation
protocols are given by Chu et al. (2019).

Samarium and Nd mass fractions and '*3Nd/'*“Nd
isotope ratios were measured on a Thermo Fisher Scientific
Neptune MC-ICP-MS at IGGCAS. The operational seftings

and cup configurations are summarised in Table 2. The
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INdi-1 Nd standard solution was used to evaluate the
reproducibility and accuracy of the instrument during Sm-Nd
isotope measurements. For Sm isotope defermination, Alfa-
Sm standard solution was used for mass bias correction of
147Sm/147Sm ratios. Detailed mass spectrometry and offline
data reduction followed the procedure of Yang et al (2011).
Procedural blanks were less than 50 pg for Sm and Nd.
Therefore, blank contributions are considered negligible and

do not require corrections of the measured isotopic ratios.

To monitor analytical procedures, replicate analyses
of certified reference material BCR-2 from the United
States Geological Sunvey (USGS) and Chinese rock refer-
ence materials GSR-2 and GSR-3 were made using
the procedure described above. During the period
of data acquisifion, BCR-2, GSR-2 and GSR-3 gave
0512638 + 0000007 (2SE, n=1), 0512395 +
0.000008 (2SE, n = 1) and 0.512909 + 0000010 (2SE,
n=2) for "Nd/'"*Nd and 0.1382 + 00003 (2SE,
n=1), 0.1099 £ 00002 (2SE, n=1) and 0.1224 +
00002 (2SE, n = 2) for '*/Sm/"**Nd, respectively, which
are identical within uncertainty with the recommended
values (Weis et al 2006, Chu et al 2009, Yang et al
2010, 2011, 2020, Fourny et al 2016, Bao et al 2018).

Results

Tara

Fragments of the Tara allanite are characterised by
minimal intemal zoning in BSE images and small mineral
inclusions (Figure 1b). The high Ce;O3 (11.42% m/m) mass
fraction makes it an allanite<(Ce). The next abundant REE is
LaoO3 (6.08% m/m), followed by NdoO3 (3.12% m/m).
Allanite contains considerable amounts of ThRO, (1.13% m/
m). Comparison between spots showed large variations for
some oxides, especially for ThO, (> 40%) (Table 3). Trace
element mass fractions determined by LAIICP-MS (Table 4)
show large variations. The chondrite-normalised REE patterns
(Figure 2b) show a strong LREE enrichment with respect to
the HREE and a negative Eu/Eu* anomaly (0.21-0.27). The
sample also exhibits a large fractionation of LREE/HREE ((La/
Lu)y = 803). The U mass fractions range from 39 to
94 ug g, with a mean of 61 pg g™ The Th mass fractions
range from 7460 to 18300 pg g, with a mean of
11300 pg g™

The LA-MC-CP-MS Sm-Nd isotope measurements for
the Tara allanite revealed variations in '*”Sm/'*Nd and
43Nd/"*Nd from 0.0446 to 00982 and from 0.512033
to 0512233 respectively. The mean '*/Sm/'*“Nd and
143Nd/ T 4Nd 00552 £ 00163 (25

values  were

n=112) and 0512090 4+ 0000061 (25, n=112).
Although the '*/Sm/'**Nd rafio displayed large variation
with the relative standard deviation (2RSD) of 29.5%, the
calculated inifial "**Nd/"*“Nd rafio of 112 analyses only
showed limited variation (0.511940 4 0.000038, 2s,
n=112). All the data points fall on a 415 Ma reference
isochron (Figure 3b) and yie|d a mean engdlt) of
-3.18 £ 0.75 (25, n = 112) (Table 7). Due to limited supply,
the Sm-Nd isofope  systematics of Tara allanite was not

analysed by solution methods.
Ccap®

CAP® allanite  exhibits compositional zoning  without
inclusions in BSE images (Figure 1a). EPMA analyses indi-
cate this sample is also abundant in LREE with CeoO3
(10.59% m/m), LaoO3 (5.40% m/m) and Nd,O5 (4.10%
m/m). ThO, varies from 0.82 to 2.22% m/m, with a mean
value of 1.51% m/m (Table 3). Trace element mass fractions
of CAP® dllanite determined by LAICP-MS (Table 4) show
large variations. The chondrite-normalised REE patterns
(Figure 2b) show a strong LREE enrichment with respect to
the HREE and a strong negative Eu/Eu* anomaly (0.02-
0.07).The sample also exhibits a |orge fractionation of LREE/
HREE ((La/Lu)y = 476). The somp|e contains less U and
more Th, with U mass fractions ranging from 58 to
245 ug g and Th mass fractions ranging from 8510 to
15600 pg g™

U-Th-Pb results of CAP® allanite acquired by LAICP-MS
defined an intercept age of 274.1 & 6.7 Ma (2s; MSWD =
1.1, n=19; Figure 4a) by forcing to a upper intercept
207pp/20ph ratio of 0.85 estimated using the model of
Stacey and Kramers (1975) for crustal Pb evolution. When
un-anchored, this dataset yields o regression with «
207pl/20%ph intercept of 0.84 & 009 and an age of
2732 + 97 Ma. Al analyses gave 2°’Pb-corrected
weighted  2%Pb/?8U  and  2%%Pb/?%?Th ages are
2717 £21/58 Ma (2s; MSWD =16, n=19) and
270.8 4+ 3.8/6.6 Ma (2s; MSWD = 07, n = 19) respec-
tively. Common Pb fractions range from 1.16 to 509% for
fros and from 9.94 to 31.96% for fos CAP® allanite was
also used as secondory reference material, and the results
are similar. The obtained U-Th-Pb ages of CAP allanite are
in good agreement with previous ID-TIMS, SIMS and LA-ICP-
MS results (Barth et al 1994, Catlos et al. 2000, Gregory
et al 2007, Bum et al 2017, Lico et al. 2020).

LA-MCICP-MS Sm-Nd analysis of this sample shows
slight variations in '4Sm/"**Nd and limited variation in
43Nd/"*Nd, ranging from 00642 to 00983 and from
0.512090 to 0.512180 respectively. All data points plot
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Figure 2. (a) Comparison between U and Th mass fractions. (b) The f,06 and f,0g values represent the percentage of

common 2%¢Pb and 2°®Pb in total 2°Pb and 2°8Pb, respectively, of allanite samples analysed in this study. (c)

Comparison between Sm and Nd mass fraction. (d) Mean chondrite-normalised REE distribution patterns.

along a reference isochron for 275 Ma (Figure 3a) and yield
a mean gng(f) of -5.70 & 0.72 (25, n = 51) (Table 7). The
caleulated initial "**Nd/'*Nd ratios of fifty-one analyses
show only limited variation with a mean value of 0.511991
+ 0000037 (25, n = 51). By reason of the short supply of
CAPP allanite, and thus the quantities available at the time
of measurement, it was not analysed by ID-MC-ICP-MS.

Daibosatsu

The Daibosatsu allanite typically is homogenous in BSE
images (Figure 1c) with ThO, mass fractions obtained by
EPMA of 104 £ 0.16% m/m (25 n=20). The high
CeyO5 (12.08% m/m) mass fraction makes it an allanite-

© 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts

(Ce). The next abundant REE is LayOs (6.42% m/m),
followed by Nd»,O3 (268% m/m) (Table 3). REE mea-
surement results acquired by LAICP-MS show limited
variation. Chondrite-normalised REE patterns  (Figure 2c)
show a strong enrichment in LREE. The Daibosatsu allanite
also show a strong negative Eu anomaly (Eu/Eu* = 0.01)
and a strong fractionation between LREE and HREE ((La/
Luly = 183). This sample shows U mass fractions ranging
from 203 to 231 ug g'], and Th mass fractions from 8040
fo 9580 ug g™ (Figure 5b). For the analysed fragments,
the relative standard deviation of twenty analyses is ca.
6% for REE and ca. 9% for U and Th (Table 4), which
indicates the trace element mass fractions are relatively

homogeneous.
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Figure 3. Individual chondrite-normalised REE distribution patterns of the nine allanite samples studied. Group 1

and Group 2 in (i) represent unaltered and altered domains of SQ-51 allanite. n represents the number of analyses.

The weighted mean 2%8Pb/?*?Th age obtained by LA-
ICP-MS method is 11.6 + 0.3/04 Ma (2s; n = 20; Fig-
ure 4b). The measured f0g ranges from 3.23% to 9.87%,
whereas f0¢ is considerably higher with a mean of 81.83%
(25, n = 20; Table 5). The high proportion of common 2°°Pb
reflects the markedly lower U content and the young age of
the sample. Because Th-rich Cenozoic allanite like Dai-
bosatsu allanite have considerable contributions of excess
209, only the 2%%Pb/??Th ages are reported. The
Daibosatsu allanite was also used as secondary reference
the The obtained
208pb,/232Th age in this study agrees well with the reported
SIMS 298Pb/2%2Th age of 11.5 + 02 Ma (lico et al
2020).

material, and results are similar.
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The Sm-Nd isofope systematics of Daibosatsu allanite
obtained by LAMMC-ICP-MS is homogeneous with a relative
1.97% the
147Sm/"Nd ratio. Daibosatsu was used as  primary

standard  deviation  of for measured
reference material for in situ Sm-Nd isotope measurements

in this studly.
LE40010

LE40010 fragments show alteration and quartz inclu-
sions in BSE images (Figure 1d). The sample is also rich in
LREE with CexO3 (9.93% m/m), LasO3 (5.29% m/m) and
Nd>Oz (277% m/m). The mean ThO, is 2.20% m/m

(Tob|e 3). The trace element mass fractions defermined by

© 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts
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Figure 4. Tera-Wasserburg diagrams for (a) CAP®, (c) LE40010 and (d) LE2808 allanite samples. Insets show
weighted mean 2°Pb/238U and 2°8Pb/232Th ages for sample CAP® after 2°7Pb correction and weighted mean
206phL, /238 ages for LE40010 and LE2808. (b) Daibosatsu allanite is geologically young, and its 2°%Pb is

dominated by common Pb. Therefore, only the weighted mean 2°8Pb/232Th age after 2°7Pb correction is reported.

Discordia in Tera-Wasserburg diagrams are forced to 2°7Pb/2°®Pb ratios estimated by the two-stage crustal Pb

model of Stacey and Kramers (1975). The un-anchored intercept age of LE2808 allanite is also presented in (d). n

represents the number of analyses. Ellipses represent the 95% confidence level.

LAICP-MS indicate LE40010 allanite is relatively homoge-
neous in REE, U, Th and Pb. The relative standard deviation is
lower than 59%. The chondrite-normalised REE patterns
reveal a strong enrichment in LREE (Figure 2d) and a strong
fractionation between LREE and HREE ((La/Lu)y = 2400). It
also shows a strong negative Eu anomaly (Eu/Eu* = 0.21).
The U and Th mass fractions range from 67 to 73 pug g
and 13200 to 14500 ug g™ respectively. Both major and
trace element mass fractions indicate LE40010 allanite is

homogenous in chemical composition.

LE40010 is the most radiogenic sample with 0, ranging
from 0.02 to 1.95% and f0g from 0.02 to 0.23% (Figure 5b).
Most data cluster near the concordia curve and yield an

© 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts

intercept at 2613 + 43 Ma (2ss, MWD =17, n=17;
Figure 4¢) with an anchored 207pk, /206p}y rattio of | 09, taken
from the Stacey and Kramers (1975) model for 2600 Ma. A
free regression of the dataset yields an upper 2°”Pb/?%°Pb
ratio of 0.60 £ 0.14 and an intercept on concordia of
2521 + 90 Ma (2s, MSWD = 1.1, n = 17). This upper
intercept value (*%Pb/?°°Pb = 0,60 + 0.14) is distinctly
lower than the model contemporaneous 2% Pb/2°°Pb ratio of
1.09, which may reflect a mixture between common and
radiogenic Pb components. However, the analyses are very
close to concordia and cannot constrain a reliable regression
line. Therefore, the anchored 207ph, /206ph, ratio as estimated
using the model of Stacey and Kramers (1975) was used in
this study. The common Pb corrected weighted mean
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Figure 5. Tera-Wasserburg diagrams for allanite (a) A007, (b) AO11, (c) AO12 and (d) SQ-51. Insets show weighted
mean 2%6Pb/238Y ages after 2°7Pb correction. Discordia in Tera-Wasserburg diagrams are forced to 2°7Pb/2%¢Pb

ratios estimated by the two-stage crustal Pb model of Stacey and Kramers (1975). n represents the number of

analyses. Ellipses represent the 95% confidence level.

206p /238 age is 2654 + 33/63 Ma (25, MSWD = 08,
n = 17; Figure 4c). The Th-Pb systematics of LE40010 shows
more scatter and a less well defined mean age of
2610 + 65/83 Ma (2s, MSWD = 15, n = 17; Table 5).
This result corresponds well with the published ID-TIMS
207pp/235U mean age of 2646 + 94 Ma (Smye et al
2014).

The LAMCICP-MS '#/Sm/"Nd and '**Nd/"**Nd
rafios of LE40010 show limited variation and are
00543 + 00007 (25, n=52) and 0510105 +
0000035 (25, n = 52) respectively. The mean eng(t) is
196 + 066 (2s, n=152). Two separate aliquots  of
LE40010 analysed by ID-MC-ICP-MS yield '*/Sm/'**Nd
and "Nd/"*Nd values of 00569 + 00002 (2s) and
0510109 + 0000016 (2s), respectively, with a mean
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engdlt) of 1.07 + 0.22 (29). The solution-based results agree
with the laser ablation results within uncertainty.

LE2808

Inclusions like epidote and monazite are found in
LE2808 fragments, and alteration along cracks was also
observed (Figure 1e). EPMA data show that LE2808 allanite
is abundant in REE and Th with Ce,O3 (10.56% m/m),
La,O5 (377% m/m), Ndo,O3 (5.33% m/m) and ThO,
(1.32% m/m) (Table 3). Chondrite-normalised REE patterns
defermine by LAICP-MS show enrichment in LREE, small
fractionation between LREE and HREE ((La/Lu)y = 21), and
strong negative Eu anomaly (Eu/Eu* = 0.01). This sample
fom 7850 to
12400 ug g, U mass fraction ranges from 161 to

contains Th  mass fraction ranges

© 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts
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202 ug g For the analysed fragments, the relative stan-
dard deviation of twenty-three analyses is ca. 10% for REE
and ca. 20% for U and Th (Table 4).

Allanite LE2808 contains variable common Pb with f0e
and fog ranging from 3.87 to 0.85% and 075 to 1.41%
respectively. The dataset yielded an intercept age of
1076 + 10 Ma (2s, MSWD = 0.7, n = 23; Figure 4d) by
anchoring to a 2°”Pb/?°°Pb rafio of 091 as esfimated using
Stacey and Kramers' (1975) model. However, the
207pl /29%Ply model ratio of 091 for 1.1 Ga is considerably
greater than the ordinate upper intercept of 0.54 4+ 0.12.This
sample gives an intercept age of 1021 £ 34 Ma (2s,
MSWD = 02, n = 23) without anchoring the upper intercept.
Previous LAICP-MS results of LE2808 show a bimodal
distribution in Tera-Wasserburg diagram and reflect a mixing
between common Pb and radiogenic Pb of ca. 1100 Ma
(ordinate upperintercept 0.23 4+ 0.06; Smye et al 2014).The
upperintercepts obtained in both studies indicate that the initial
common Pb composition of LE2808 allanite is radiogenic. The
more radiogenic 2%’ Pb/?°°Pb ratio can be accounted for a
radiogenic common Pb source atthe time of formation or some
degree of alteration. Therefore, the un-anchored intercept age
is more reliable in this case. The **Pb corrected weighted
mean 2%°Pb/?%8J age of 1078 + 9/23 Ma (25, MSWD =
0.5, n=23)isin good agreement with Smye et al (2014).
The final 2°°Pb/?*’Th age of 1041 + 44/49 Ma (2s;
MSWD = 27, n = 23) shows re|o1ﬁve|y |orge dispersion.

The mean AMCICP-MS  '*Sm/'Nd  and
"3Nd/'Nd  rafios of LE2808 are 0.1168 + 00098
(25, n = 39) and 0512245 + 0000065 (25, n = 39). The
147Sm/14Nd ratio shows a large variation with 8.40% RSD,
but the calculated initial "*3Nd/"**Nd value shows limited
variation with a mean value of 0.511402 4+ 0000042 (2s,
n = 39). The mean eng(t) is 3.59 £ 0.83 (25, n = 39). Al
data plot along a 1100 Ma reference isochron (Figure 3e).
Two aliquots were studied using ID-MC-ICP-MS and yielded
"7Sm/1“Nd and "*3Nd/"*Nd  ratios of 0.1188 +
00003 (2s) and 0512230 4+ 00003 (2s) respectively.
Laser ablation and solution-based Sm-Nd data are in good
agreement with each other.

A007

Allanite AOO7 shows pyrite inclusions in BSE images
(Figure 1. EPMA data show that AQO7 s rich in REE and
poor in ThO,. CeyOgz is the most abundant REE mass
fraction (8.919% m/m), followed by La,O3 (5.33% m/m) and
Nd>Osz (481% m/m) (Table 3). LAICP-MS analyses
demonstrate that AOO7 contains very litle U and Th, with
U ranging from 14 to 79 ug g™ and Th ranging from 0.03

to 0.44 ug g'. Chondrite-normalised REE patterns show that
this sample is rich in LREE, has a strong LREE/HREE
fractionation (mean (La/Lu)y = 1300) and has a strong
negative Eu anomaly (Eu/Euv* = 0.18).

Due to the low Th contents, 2°®Pb is dominated by non-
rodiogenic Pb, and therefore, no Th-Pb age was calculated.
U-Pb data define on a Tera-Wasserburg diagram a
discordia with an intercept age of 1865 + 21 Ma (2s,
MSWD = 0.11, n= 21, Figure 6a) by anchoring to a
207pb /29l ratio of 099 as esfimated using the two-
stage crustal Pb model of Stacey and Kramers (1975). A free
regression of the dataset yields an upper 2°”Pb/2%°Pb ratio
of 105+ 019 and an intercept on concordia of
1878 + 44 Ma (2s, MSWD = 007, n = 21). The upper
intercept from the regression of AOO7 dataset agrees well
with the common 2%Pb/?%Ph ratio for that age as
estimated from the model of Stacey and Kramers (1975).
A weighted mean 2%°Pb/?*8U age of 1866 + 11/39 Ma
(2s, MSWD = 0.1, n = 21) is in close agreement with the
molybdenite Re-Os ages obtained for Bastnéis-type deposits
(Holtstam et al. 2014) and also the U-Pb ages of bastnésite
from Bastnds-type deposits (Yang et al 2019).

The in situ '*’Sm/"*Nd and '**Nd/'**Nd values are
variable, ranging from 00686 to 0.1354 and from
0511311 to 0.511867 respectively. All Sm-Nd data define
an isochron age of 1884 £ 41 Ma (25, MSWD = 4.3
n = 65; Figure 3f) which agrees well with the ID-TIMS U-Pb
age of 1852 + 5 Ma and the LAICP-MS 2°°Pb/?38U age of
1866 £ 11 Ma, as well as the multi-mineral (e.g, bastnasite,
ferriallanite, cerite, percleveite and t6mebohmite) Sm-Nd
isochron from the Bastnés deposit (1875 + 110 Ma; Holt-
stam et al 2014), and o bastndsite and apatite Sm-Nd
isochron from the Bastnéis deposit (1843 + 26 Ma; Yang
et al 2019). The eng(t) for 1860 Ma is 1.38 + 0.81 (25,
n = 65). The Solution MC-ICP-MS analysis of four separate
aliquots of AOO7 gave similar Sm-Nd isotope compositions.
Measured '/Sm/"*Nd and '**Nd/'**Nd ratios are
01106 £ 00021 (25, n=4) ond 0511632 +
0.000007 (2s, n = 4), respectively, which gives a mean
engdlt) value of 1.05 + 0.58. The apparently smaller variation
largely reflects the larger sample size for solution MC-ICP-MS
analysis, which is averaging small-scale heterogeneity.

AO11

Allanite AO11 shows heterogeneous domains in BSE
images in addition fo alterations along cracks and inclusions
(Figure 1g). EPMA data show that AOT1 allanite contains
large amount of REE, with Ce;O3 of 11.03% m/m, LaxOg of
7.06% m/m and NdoO3 of 2.53% m/m (Table 3). ThO,
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Figure 6. Concordia diagrams of ID-TIMS U-Pb results in this study. Allanite samples (a) AO11, (b) AO12 and (c)
A007 were analysed at Jack Satterly Geochronology Laboratory, Department of Earth Sciences, University of

Toronto; allanite sample (d) AOO7G was analysed at GFZ German Research Centre for Geosciences. Grey dashed

circles in (a) and (b) were not used for age calculation. n represents the number of analyses. Ellipses in the

concordiadiagram represent the 95% confidence level.

mass fraction range s from 0.30 to 0.72% m/m. REE mass
fractions obtained by LAICP-MS exhibit strong fractionation
between LREE and HREE ((La/Lu)y = 940) and a sfrong
negative Eu anomaly (Eu/Eu* = 0.23). The U and Th mass
fractions are variable with U ranges from 2310 113 pg g
and Th ranges from 3960 to 6820 pg g™

The f06 and fog ranges from 0.01 to 20.34% and from
0 to 1.57% respechively. The 29®Pb/?*2Th ages show
scattered distribution from 858 to 2264 Ma (Supplementary
data, Table S3), which indicates the Th-Pb system of AO11
allanite is disturbed. The U-Pb results for nineteen analyses
are presented in a Tera-Wasserburg diagram (Figure 6b) by

© 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts

forcing to an upper intercept 2%Pb/?%°Pb ratio of 0.92,
calculated from Stacey and Kramers' (1975) model. These
data yield an intercept age of 1157 + 23 Ma (2s,
MSWD =003, n=19) and o weighted mean
209pb/238 age of 1148 + 23/33 Ma (25, MSWD =
0.03, n = 19). The un-anchored data give a 207p}, /206p},
infercept of 090 £ 021 and an intercept age of
1153 + 48 Ma (2s, MSWD = 003, n = 19). The uncon-
strained 2%’Pb/?%°Pb intercept agrees within uncertainty
with the model 2°”Pb/?°°Pb ratio obtained from the model
of Stacey and Kramers (1975). The common Pb corrected
208p}y/232Th age of 1190 + 85/88 Ma (25, MSWD =
146, n = 19) shows a very large dispersion.
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In situ Sm-Nd data gave variable '*Sm/'*Nd and
"*Nd/**Nd ratios of 00487 + 00140 (25, n = 55) and
0511691 £ 0000115 (25, n = 55), respectively, yielding
a mean eng(l) value of 3.53 £ 078 (25, n= 55). The
calculated inifial "“3Nd/"*Nd rafio shows limited variation
(0511356 + 0000041, 2s, n = 55). Solution MCHCP-MS
analyses of four separate AOT1 allanite aliquots yielded
"“7Sm/1**Nd and "**Nd/'*Nd  ratios of 00544 +
0.0006 (2s) and 0.511718 £ 0000013 (2s), respectively,
and a mean eng(t) value of 320 + 0.17 (2s). The values
obtained by different methods agree within uncertainty,
whereby the |grger scatter for in situ analyses reflects the
larger heterogeneity at the smaller scale.

AO12

A012 allanite experienced alteration, which is visible in
the BSE image (Figure 1h). The EPMA data reveal that AO12
contains considerable amount of REE with Ce,O5 of 8.51%
m/m, La,O3 of 3.83% m/m and Ndy,O5 of 3.25% m/m
and ThO, of 1.08% m/m (Table 3). Trace element deter-
mined by LAICP-MS indicates the large variation in REE, U
and Th mass fractions. Chondrite-normalised REE patterns
exhibit enrichment in LREE and a strong fractionation
between LREE and HREE ((La/Lu)y = 554). AO12 allanite
also show a strong Eu anomaly (Eu/Eu* = 0.08). The
variable U and Th mass fractions range from 97 to

306 ug g™ and from 10200 to 21900 ug g™' respectively.

AQ12 contains considerable amount of common Pb with
o6 and hog varying from 2.45 to 22.54% and 031 to
3.78% respectively. AO12 allanite suffers from the same
problem as AO11, that is its Th-Pb system was disturbed
during alteration (Figure Th). The 2%®Pb/?*°Th ages are
much more scattered than the 2°°Pb/?%8U ages and range
from 221.2 to 347.0 Ma (Table $3). Consequently, we only
reported U-Pb age data for this sample. Eighteen analyses
yielded an intercept age of 334.5 4+ 4.0 Ma (25, MSWD =
09, n = 18) by forcing to an upper intercept 2°”Pb/?°°Pb
ratio of 0.86 calculated from the model of Stacey and
Kramers (1975) and weighted mean 2%Pb/?*®U age of
329.1 + 37 Ma (25, MSWD = 09, n = 18, Figure 6¢). The
unconstrained discordia yielded a 2°”Pb/?°°Pb ratio of
122 +£ 023, which is much higher than the model
contemporaneous  2°’Pb/?%Pb ratio of 0.86 and an
infercept age of 3421 + 58 Ma (2s, MSWD = 002,
n=18). The higher 207p}, /206p}, intercept of 1.22 + 0.23
could be accounted for by heterogeneous common Pb
composition. Constrained and unconstrained intercept ages
agree with each other within uncertainty and also broadly
agree with the age constraints for metamorphism in this area
(Rétzler and Plessen 2010, Kroner and Romer 2013).

The laser ablation Sm-Nd results of AO12 allanite are
presented in Table 7. The '*/Sm/'**Nd ratio shows large
variation with a mean of 0.1093 + 00195 (25, n = 54),
and "Nd/"*Nd ratio shows limited variation with a
mean of 0.512579 4+ 0000052 (2s, n = 54). The calcu-
lated inifial "“*Nd/"*Nd ratio shows limited variation
(0512239 + 0000035, 2s, n = 54). The mean engy(t)
value is 2.32 + 122 (25, n = 54). Al "Sm/'**Nd and
143Nd/ " *“Nd values scatter around a reference line for
340 Ma (Figure 3h). Due to |grge variability in Sm-Nd
isotope composition and limited supply, this sample AO12
was not further characterised by solution method.

SQ-51

Some grains of SQ-51 allanite exhibit distinctive alter-
ation rims (Figure Ti). Similar to AOO7 allanite from a skam-
type deposit, SQ-51 allanite is enriched in U rather than Th.
EPMA data show that SQ-51 contains considerable
amounts of REE with Cep,O3 of 8.00% m/m, LayO5 of
5.39% m/m and Nd,O3 of 1.56% m/m (Table 3). Trace
element mass fractions obtained by LAICP-MS show large
variation. The unaltered (Group 1) and altered (Group 2)
domains show no difference in LREE contents, but can be
differentiated in HREE mass fractions (Figure 2i) and degree
of LREE and HREE fractionation. Both domains show a weak
positive Eu anomaly with Eu/Eu* = 2.13. Other trace
elements show litle difference between the two groups of
allanite.

There is a significant age difference between the two
groups of allanite. Unaltered (Group 1) allanite yields an
infercept age of 7763 £ 6.9 Ma (25, MSWD = 0.10,
n = 11) by forcing the discordia through a 2°”Pb/?%°Pb ratio
of 0.89, as estimated from the model of Stacey and Kramers
(1975). The weighted mean 2%Pb/?%8U age is
7764 £ 7.5 Ma (2s, MSWD = 0.10, n = 11, Figure 6d).
The unconstrained discordia for Group 1 data intercepts at a
207p /%P rafic of 400 + 570 and an age of
7790 + 13 Ma (2s, MSWD = 002, n= 11). The |orge
uncertainty of the 2%’Pb/?%°Pb intercept reflects the small
spread of the data that cluster close to Concordia. Altered
(Group 2)c1||cmifeyie|o|s anintercept at 728.2 + 6.3 Ma (2s,
MSWD = 0.10,n = 12) by forcing to a 2%”Pb/?°®Pb ratio of
0.89 estimated from the two-stage crustal Pb model of Stacey
and Kramers (1975) and a Weighfed mean 2%%Pb/238Y age
of 728.6 + 6.7 Ma (2s MSWD = 0.10,n = 12, Figure 6d).
The unconstrained discordia of the Group 2 dataset yields a
207p /%Pl ratio 0.78 + 1.7 and an intercept date of
7280 + 12 Ma (25, MSWD = 0.04, n = 12). Similarly, the
dataset of Group 2 clusters is very close to the concordia, and,
consequently, the 297 Pb/?%°Pb intercept is poorly constrained.

188 © 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts



The LAIICP-MS U-Pb ages of altered allanite correspond well
with the youngest age for granitic dykes (736 + 7 Ma;Liet al
2018) in this area.

The results of in situ Sm-Nd analysis are slightly variable
(Figure 3i) with mean '*Sm/"*Nd and "*3Nd/'*“Nd
values of 00408 + 00043 (25, n = 62) and 0.511538 +
0.000067 (25, n = 62) respectively. The calculated initial
3Nd/"“Nd value shows limited variation (0.511340 +
0000063, 2s, n=062) with mean englt) value of
-672 + 124 (25 n = 62). Unaltered and altered SQ-51
allanite show no difference in their Sm-Nd isotope system-
atics. Because of the limited availability of sample material,
the Sm-Nd isotope systematics of SQ-51 allanite was not
analysed using the solution method.

U-Pb ID-TIMS geochronology

Three allanite samples (A007, AOT1 and A012) were
selected for U-Pb ID-TIMS analysis due to their relatively
homogeneous ages and lower common Pb contents.

Six fractions of AO11 allanite were analysed. The
common Pb contents and Th/U ratios range from 2.1 to
47 ug g and 173.1 to 213.5 respectively. On a Wetherill
diagram, all data obtained from fragments of AO11 allanite
fall on the concordia with 29°Pb/?%8U ages between 1143
and 1289 Ma (Table 6; Figure 7a). The significant scatter is
mainly due to samples with measured low 29°Pb/?%*Pb
values (67.4-173.8; Table 6). Fraction 11Y-1, with low
measured 2°°Pb/?%Pb ratios, has a larger analytical
uncertainty than other fractions and, thus, was not used for
age calculation. Five aliquots constrain a weighted mean
207ph/29Ph age of 1162 + 36 Ma (25, MSWD = 0.006).
This age agrees well with the LAICP-MS results and the
pub|isheo| zircon U-Pb ID-TIMS age (Barth et al 1995), but
disagrees with an earlier reported allanite Th-Pb age
(1006 + 37 Ma; Catlos et al 2000). This age difference
may be caused by open system behaviour of the U-Th-Pb
system or late hydrothermal alteration (Figure 1g). The cause
of the age deviation remains enigmatic as the measurement
data have not been published (Catlos et al 2000). It is most
likely related to the relatively high Th contents that cause
metamictisation, which facilitates Pb redistribution during
later hydrothermal alteration (Figure 1g). The relatively high
amount of common Pb in this sample increases the
uncertainty of the correction of initially present Pb.

Five fractions of AO12 allanite were analysed. The Pb
isotopic composition of the individual fractions is relatively
radiogenic with a 2%°Pb/?®*Pb range of 218.1-4309
(Table 6). Common Pb ranged from 0.8 to 3.2 ug g™ and
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Th/U ranged from 43.7 to 56.5. On a Wetherill diagram, al
A012 allanite analyses are concordant, but do not overlap
within - analyfical uncertainty. The 2°°Pb/?%8U ages of
measured fractions fall between 339 and 307 Ma
(Table 6; Figure 7b). Fractions 12Y-4 and 12Y-5 yie|o| lower
apparent 2°°Pb/?*8U ages than the other fractions, which
may be caused by alteration (Figure 1h), and were not used
for age caleulation. Three fractions of AO12 somp|e (one
with a very large uncertainty) give a weighted mean
205pb/238 age of 337.8 + 4.6 Ma (25, MSWD = 9.3).
This value agrees with our LAICP-MS results and previously
reported age data of this region (Kroner and Romer 2013).

Sample AOO7 was analysed in two different laboratories
using ID-TIMS. The data shown in Figure 7c were obtained
at University of Toronto. Four of the five analysed fragments
are concordant, and one fraction is slightly discordant
possibly due to Pb-loss. Apparent 2°°Pb/?38U ages range
from 1730 to 1862 Ma (Table 6; Figure 7¢). All analyses
define a Pb-loss isochron line with an upper intercept age of
1856 + 12 Ma (25, MSWD = 0.14) and weighted mean
207pp/20ph age of 1856 + 11 Ma (25, MSWD = 0.14).
The data shown in Figure 7d were obtained at GFZ. Five
fractions were analysed, and all analyses define a discordia
with an upper intercept age of 1852 &7 Ma (2s,
MSWD = 0.29) and weighted mean ?%Pb/?°Pb age of
1851 + 5 Ma (25, MSWD = 0.24). The ID-TIMS results
from two different laboratories agree with each other within
uncertainty. For an old sample like AO07, the 2%"Pb/?%°Pb
age is generally considered more reliable than the
206p}, /238 age (Mattinson 1987). The results from the
two laboratories yield a weighted mean 2%Pb/?%°Pb age
of 1852 + 5 Ma (25, MSWD = 021).

Discussion

Evaluation of potential allanite reference
materials for in situ U-Th-Pb dating

The LA-ICP-MS U-Th-Pb analytical data of the investigated
allanite samples are summarised in Table 5. Tara allanite
comprises minimal internal zoning and small mineral inclu-
sions, which is characterised by relatively low mass fracfions of
Pb (139-312 ng 9'1) and U (39-94 ng g"]), high mass
fraction of Th (7460-18300 ug g') and variable Th/U
(139-263). Tara allanite is the most widely used reference
material for U-Th-Pb dating (Gregory et al 2007, Korh 2014,
Smye et al. 2014, Lico et al. 2020), due fo its relatively low
common Pb composition (Figure 5b). Nonetheless, Tara
allanite is, however, not isotopically homogeneous at the
fine-scale (Smye et al 201 4), and Bumn et al (2017) orgued
that no U-Pb reference value can be provided. In this study,

© 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts 189
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Figure 7. Diagrams of '47Sm/'**Nd-"43Nd/'#*Nd isotope ratios for the studied allanite samples. (a) CAPb, (b)
Tara, (c) Daibosatsu, (d) LE40010, (e) LE2808, (f) A0O07, (g) AO11, (h) AO12 and (i) SQ-51. n represents the number of

analyses.

Tara allanite was used as primary reference materials using
the ratios *%°Pb/***U = 00651 & 00013, **’Pb/**°U =
07920 4 00390 and **®Pb/***Th = 00207 + 00004
from previous studies (Smye et al 2014, Bum et al. 2017).This
somp|e contains variable amount of common Pb; therefore,
some analyses had to be rejected during the analysis. CAP® is
anotherwell-studied allanite. It has experienced some degree
of alteration. It is characterised by relatively low mass fractions
of Pb (146-327 ug g™') and U (58-245 ug g™'), high mass
fraction of Th (8510-15600 ug g™') and variable Th/U (39—
151). It has relatively radiogenic Pb isotopic compositions with
boo = 22.85% and fyps = 2.10%, and concordance
between U-Pb and Th-Pb systems. Therefore, CAP® is a good
candidate to be a primary reference material for Th-Pb dating
and a secondary reference material for U-Pb dating for LA-ICP-

© 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts

MS analysis. However, CAP® awaits a full investigation by ID-
TIMS. Daibosatsu allanite is characterised with a fairy
homogenous chemical composition with Pb of 17 to
21ug g, U of 37 to 45ug g’ and Th of 8040 to
9580 pg g The Daibosatsu allanite is not an ideal candi-
date for a primary reference material for U-Th-Pb dating,
despite the fact that LAICP-MS and SIMS 2°%Pb/?32Th ages
are identical within analytical uncertainty (Lico et al. 2020).
Maijor problems with Daibosatsu allanite result from the
extremely high proportion of common Pb (ho, = 81.83%,
and hog = 6.99%) and the need fo correct the excess 2°°Pb
derived from the decay of excess 2*°Th, which results in the
discordance in U-Pb and Th-Pb systems. Daibosatsu allanite,
however, may serve as a secondary reference material to be
used in quality control of Cenozoic samples. LE40010 allanite
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is characterised by homogeneous chemical mass fractions of
Pb(1897-2100 ug g'), U(67-73 ug g ') and Th (13200~
14500 ug g '), and also a narrow range of Th/U ratios of
195-206. LE40010 allanite has the lowest contribution of
common Pb (f0s and fog are below 1%). The weighted
mean 2%°Pb/238Y ageof 2654 + 33/63 Ma (25 MSWD =
0.8, n =17, Table 5) is well defined; the weighted mean
208pb/232Th ages show larger dispersion (2610 + 65/
83 Ma, 2s, MSWD = 15, n = 17, Table 5). However, the
obtained U-Pb and Th-Pb ages agree well with each other,
meaning that this allanite can be used as a primary reference
material for U-Pb dofing (Smye et al 2014). A|Though there is
some scatter in the Th/U ratios, the concordance with the U-Pb
system meains the material is suitable to be used as a primary
reference material for U-Pb dating and a secondary reference
material for Th-Pb dating. As for sample LE2808, this sample is
characterised by low mass fractions of Pb (496-704 pg g™')
and U (161-249 ug g'), and high mass fractions of Th
(7850-12400 ug g™'). Th/U ratfio ranges from 43to 61.Only
the unaltered and inclusion-free domains were analysed as
identified with BSE image analysis, which improved the
reliability of the age data. Even though the °°Pb/?*%U and
208p /2321 ages  coincide  within  uncertainty,  the
208pl,/232Th age exhibits large dispersion. LE2808 is not
suitable to be a primary reference material for Th-Pb dating,
but may serve as secondary U-Pb dating reference material for
LAICP-MS analysis.

Allanite samples AO07,A011,A012 and SQ-51 are only
reported in this study. AOO7 allanite is characterised with very
low mass fraction of Th varying from 0.001 1o 0.016 pg g™
lead and U mass fractions are variable with Pb of 10—
44 ug g and U 14-79 pg g respectively. The suitability of
A007 dllanite as a primary U-Pb reference material is
compromised by the variable and relatively high common
Pb contents (hoe ranging from 6.66% to 19.02%). Allanite
A007 shows very good reproducibility (with °°Pb/?*8U age
ranging from 1874 to 1847 Mal), and the in situ U-Pb age
(1865 4+ 21 Ma) agrees well with the ID-TIMS ages
(1856 + 10 Ma from JSGL; 1851 + 4 Ma from GFZ)
produced by two laboratories. Sample AO11 is characterised
by variable mass fractions of Pb (235-412 ug g™'), U (23—
113 ug g ') and Th (3960-6280 pg g'). The measured U-
Pb ages of allanite AO11 have a limited dispersion, and the
LAICP-MS age (1157 £ 23, MSWD = 063, n=19) is
consistent with the ID-TIMS age (1162 + 36, MSWD = 0.06,
n=D5). In contrast, the Th-Pb system shows considerable
scatter  (2°%Pb/?32Th age of 1190 + 85/88 Ma, 2s,
MSWD = 146, n = 19), but the U-Pb and Th-Pb systems
are essentially concordant. Accordingly, allanite AO11 may be
used as a secondary reference material for U-Pb dating, since
it has variable amounts of common Pb (f0¢ ranging from

3.87% to 8.85%), provided BSE images are used to avoid
altered sections and inclusions. Sample AO12 is characterised
by large variation in Pb (153-216 ugg'), U (97—
111 ug g™') and Th (10200-21900 pg g') mass fractions.
Allanite AO12 shows (similar to allanite AOT1) limited
dispersion in 29°Pb/?38U ages, but large dispersion in
208pb/232Th ages (292 + 21/22 Ma, 25, MSWD = 121,
n = 18), which o|ong with heterogeneous contributions of
common Pb, makes allanite AO12 unsuitable as a primary
reference material. The 2°®Pb/?*?Th ages measured by [A-
ICP-MS are not in agreement with the U-Pb ages. This
discordance might be the result of hydrofhermo| alteration,
which is obvious in BSE image (Figure 1h). Allanite AO12,
however, could be a suitable secondary reference material for
U-Pb dating. Allanite SQ-51 exhibits a conspicuous age
heterogeneity and, therefore, is not suitable to serve as a
reference material. The discordance between U-Pb and Th-Pb
systems might also be accounted for the hydrothermal
alteration identified in the BSE image (Figure Ti).

In summary, allanite LE40010 has potential as a primary
reference material for U-Pb dating but requires additional ID-
TIMS data, and allanite CAPP is a good primary reference
material for Th-Pb dating but also needs additional ID-TIMS
data. Allanite samp|es CAPb, LE2808, AOO7, AOT1 and
AQ12 are suited to serve as secondary reference material for
U-Pb dating. LE40010 would be suitable as a secondary
reference material for Th-Pb dating. Daibosatsu can serve as
a secondary reference material for U-Pb or Th-Pb dating of
Cenozoic samples, although low sensitivity instrumentation
may be hampered with low counts on this young material for
U-Pb. SQ-51 is not appropriate to serve as reference material
due to age heterogeneity. As highlighted by previous studies,
the existence of inclusions and alteration of some grains
means that it is preferable to characterise individual grains
before using them as a reference material. We also reiterate
two points: (1) ‘reference ages' should not be used for U-Th-
Pb dating, but normalisation of individual Pb/U and Pb/Th
ratios should use individually measured ratfios as determined
by ID-TIMS (Horstwood et al 2016), or at least cross-
calibrated with materials that have ID-TIMS values; (2) the
uncertainty of the reference material U/Pb and/or Th/Pb
ratios, should be propagated into the final age uncertainty,
as this limits our ability to ‘know’ what the age of the sample is
(Horstwood et al 2016), that is we cannot know our samples
to a better precision than our reference materials.

Potential of allanite for in situ Sm-Nd isotope
measurement

Sm-Nd isotopic results of allanite samples investigated
here are summarised in Tables 7 and 8. All measured
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Figure 8. Effects on enq(0) of radiogenic in-growth
143Nd in allanite crystals with variable crystallisation
age and a '*7Sm/'**Nd ratio of 0.1. The maximum
uncertainty of the '47Sm/'**Nd ratio to achieve a
precision of 0.5¢ for the initial Nd isotopic composition
depends on the age of the samples. For a 1000 Ma old
sample, the uncertainty of the '*”Sm/'**Nd ratio
should be less than 4%.

147Sm/"Nd and '"*3Nd/'*Nd rafios for Daibosatsu
allanite show very limited variation. Especially, the RSD of all
measured '’Sm/'**Nd ratios are less than 2% (Table 7)
on average, indicating the homogeneity of Sm-Nd isofopic

composition for Daibosatsu allanite.

Previous in situ allanite Sm-Nd isotope analyses mainly
used NIST SRM 610, synthetic JNdi glass and LREE glass for
calibration and standardisation (McFarlane and McCulloch
2007, 2008, Fisher et al. 2011, Hammerli et al. 2014). As
noted by McFarlane and McCulloch (2008), the suitability of
NIST SRM 610 as reference material is compromised by the
evidently different ablation behaviour between NIST SRM
610 and allanite. Fisher et al (2011) and Hammerli et al.
(2014) indicate that the JNdi glass and LREE glasses can be
used as reference materials to calibrate younger allanite
samples, since the accuracy of the measured '*”Sm/'**Nd
ratio is less important than for old samples (see Figure 8).
However, the use of a matrix-matched reference material is
critical to obtain precise and accurate '47Sm/'#*Nd ratios,
especially for ancient samples (Foster and Vance 2006,
Fisher et al 2011, lizuka et al 2011, Liu et al 2012). The
initial 1*3Nd/"**Nd ratios and end(t) values are calculated
using the measured '*”Sm/**Nd and '**Nd/'*Nd ratios

and the age of the mineral. Thus, the precise and accurate

measurement on '*’Sm/'*Nd is critical, especially for
ancient allanite. For a ca. 1.0 Ga allanite sample with
147Sm/MNd of 0.1, the analytical uncertainty of the
147Sm/1“Nd ratio has to be less than 4% to achieve an
uncertainty of < 0.5eng for the initial '**Nd/"**Nd (Fig-
ure 8). In this work, prob|ems associated with laser-induced
fractionation of '*’Sm/'*Nd and instrumental drift are
reduced using Daibosatsu allanite as a matrix-matched
natural reference material. Although the limited variation of
147Sm/ 4Nd is vital for @ primary reference material, it is
not necessarily indispensable for a secondary reference
material. The crystallisation of allanite depletes the source
reservoir in LREE, and the REE pattern of allanite may change
during crystallisation (Romer and Xiao 2005). Therefore,
most magmatic allanite samples show variation in measured
147Sm/MNd and  "*3*Nd/'**Nd (Table 7), but have
consistent calculated initial *3Nd/'#*Nd values. Samples
with a homogeneous initial '**Nd/'**Nd can be used as a
secondary reference material.

Allanite grains with low Sm/Nd rafios are ideal for
in situ Sm-Nd isotope analysis. As summarised in Tables 7
and 8, the results obtained by LA-MCICP-MS (eg,
LE40010, LE2808, AOO7 and AO11) are identical with
the solution data. This demonstrates the feasibility of our
in situ Sm-Nd analytical method. Combining their age, we
can obtain the corresponding eng(t) values (Table 7 and
8). In brief, the data presented in this study indicate that
reliable Sm-Nd isotopic composition can be obtained by
LA-MC-ICP-MS.

Potential allanite reference materials for in situ
Sm-Nd isotope measurement

Reference materials are crucial for in situ measurements
in order to obtain accurate data. Ideal reference materials
for in situ allanite Sm-Nd isotope analysis by LAAMC-ICP-MS
should meet the following requirements: (a) have homoge-
neous ' *Sm/'*Nd and *3Nd/'**Nd isotope ratios; (b)
have a uniform distribution in Sm and Nd both within and
between individual grains; (c) be free of inclusions and
infernal structures (e.g, cracks); (d) have a known crystallisa-
tion age; and (e) be available to the scientific community
(Ma et al 2019, Yang et al 2019).

In this study, the long-ferm in situ '*’Sm/"**Nd and
143Nd/"*4Nd  values of Daibosatsu allanite show very
homogeneous composition. The mean '*/Sm/'**Nd ratio
RSD is less than 2%. Therefore, Daibosatsu allanite is suitable
as a reference material for in situ Sm-Nd measurement. The
in sitt Sm-Nd composition of LE40010 allanite shows
limited variation in '#’Sm/'*Nd ratios with a mean RSD

© 2022 The Authors. Geostandards and Geoanalytical Research © 2022 International Association of Geoanalysts 195



P

GEOSTANDARDS and
" GEOANALYTICAL

RESEARCH

Table 8.

Samarium and Nd mass fractions and '*”Sm/'*4Nd and '*3Nd/'#“Nd isotope ratios of allanite samples
and previously characterised reference materials measured by ID-MC-ICP-MS in this study

Allanite Sm Nd 1479m/144Nd 143Nd/T4*Nd 2SE T43Nd/T44Nd(1) endlt)
(ngg") | (ngg™
LE2808 (~ 1100 Ma)
1 9254 47122 0.1187 0512225 0.000010 0511368 294
2 9138 46457 0.1189 0512234 0.000010 0511375 304
Mean 9196 46789 0.1188 0.512230 0.511372 3.01
2s 165 941 0.0003 0.000012 0.000010 0.20
LE40010 (~ 2800 Ma)
1 2339 24868 00568 0510102 0.000009 0.509051 095
2 2224 23567 00570 0510113 0.000009 0.509059 1.1
Mean 2281 24217 0.0569 0.510107 0.509055 1.03
2s 163 1840 0.0002 0.000016 0.000011 0.22
AOO7 (~ 1870 Ma)
1 7554 41492 0.1100 0511632 0.000009 0510285 1.19
2 7696 42488 0.1095 0511635 0.000009 0510295 1.38
3 7772 41956 0.1120 0511632 0.000009 0510262 072
4 7752 42307 0.1107 0511627 0.000009 0.510272 092
Mean 7693 42061 0.1106 0.511632 0.510279 1.05
2s 197 878 0.0021 0.000007 0.000030 0.58
AO11 (~ 1160 Ma)
1 2122 23764 00540 0511710 0.000010 0511299 3.10
2 2264 25094 00545 0511719 0.000008 0511304 320
3 2299 25450 00546 0511725 0000011 0511309 331
4 2268 25158 00545 0511719 0.000009 0511304 320
Mean 2238 24866 0.0544 0511718 0.511304 3.20
2s 158 1502 0.0006 0.000013 0.000009 0.17
CRM Sm Ref. Nd Ref. ['*7Sm/'**Nd| Ref. |'43Nd/'4“Nd| 2SE Ref.
(ng @) (ng g™
This study This study This study This study
BCR-2
1 6.47 6.54° 28.30 28.60° 0.1382 0.1383° 0.512638 0.000007 | 0.512641°
651° 28.43° 0.1385¢ 0.512637¢
0.512637°
GSR-2
1 320 17.60 0.1099 0.512395 0.000008 | 0.512382¢
GSR-3
1 1026 4973 0.1248 0512913 0.000009 | 0.512901°
2 9.89 49.80 0.1200 0512906 0.000008 | 0.512899'
Mean 1008 4977 0.1224 0512909
2s 0.54 0.09 0.0067 0.000010

endlt) was calculated as an initial value with the age obtained by U-Pb dating of allanite in this study.
° Weis et al. (2006), ® Chu ef al. (2009), © Yang et al. (2011), ¢ Yang et al. (2020), © Foumy et al. (2016), f Bao et al. (2018).

of 0.71%. The in situ result of LE40010 agrees well with the
solution-based data. Thus, the robustness of in situ results in
combination with the coincidence of the in situ and solution-
based results indicates that the Sm-Nd isotopic composition
of LE40010 is reproducible and accurate. The Daibosatsu
and LE40010 allanites can serve as excellent “external”
reference materials for in situ Sm-Nd isotope measurements.
Several of the studied allanites cannot be used as primary
reference materials, but show very consistent and homoge-
neous initial '**Nd/"#Nd isotope ratios, including CAP®,

196

Tara, LE2808, AO07, AO11 and AO12, which have the
potential to serve as secondary reference materials. Sample
SQ-51
143Nd/T“Nd values; therefore, it is not a good reference
material candidate for LAAMCICP-MS analysis.

shows a relatively large variafion in inifial

Conclusions

The obtained in situ allanite U-Th-Pb ages are consis-
tent within uncertainty with literature values and our ID-TIMS
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results. We recommend that LE40010 allanite has potential
to serve as a primary reference material for in situ U-Pb
dating, large dispersion on Th-Pb results sfill can make it @
secondary reference material or in situ Th-Pb dating. CAPP
allanite could serve as primary reference material for in situ
Th-Pb doting, but io|e0||y, requires modemn ID-TIMS charac-
terisation. Furthermore, CAPb, LE2808, A007, AO11 and
AO012 can serve as secondary reference materials for in situ
U-Pb dating. Daibosatsu allanite can be used as secondary
reference material for Cenozoic Th-Pb dafing to monitor
data reproducibility, but its young age means it is not ideal
to serve as primary reference material for U-Pb doﬁng, due
fo the excess of *°*Pb and a considerable amount of
common Pb.

The '/Sm/"*Nd and "**Nd/'**Nd isotope ratios of
natural allanite samples determined by in situ LAAMC-ICP-
MS are consistent with the values determined by solution
methods, demonstrating the reliability and robustness of the
in situ Sm-Nd measurement protocol described herein. The
Daibosatsu and LE40010 allanites show very homogeneous
Sm-Nd isotopic compositions and are therefore, ideal
primary reference materials for calibration of in situ Sm-Nd
isofope measurements. CAPb, Tara, LE2808, A0O07, AO11
and AO12 show homogeneous initial Nd isotopic compo-
sitions, which imp|ies that They are suitable to serve as
secondary reference materials for in situ Sm-Nd isotope
measurements. Sample SQ-51 is heterogeneous in U-Pb
age and Sm-Nd isotopic composition; thus, it is not a suitable
candidate as a reference material for LA-MC-ICP-MS

analysis.
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