
Random nosie contained seismic data interpolation via thresholding method
Jingjie Cao*, Shijiazhuang University of Economics, China
Yanfei Wang, Institute of Geology and Geophysics, CAS, China

Summary

Sparsity-promoted seismic interpolation method is the
mainstream of interpolation methods. However, most
sparsity-promoted methods are target at high signal-to-
noise ratio data and can not handle noise contained data.
The existence of noise makes the interpolation results
unacceptable, thus simultaneous interpolation and
denoising is necessary to remove noise and interpolate data.
This abstract demonstrate that random noise contained
seismic data interpolation can be realized by adjusting the
least thresholds of thresholding methods. Furthermore, the
weighted projection onto convex sets method was proved to
be a thresholding method aimming at a unconstrained
optimization model but the regularization parameters are
amplified by the weighting factor. Additionally, a novel
thresholding method based on zero-norm regularization is
introduced for simultaneous interpolation and denoising.
Numerical examples on synthetic and field data
demonstrate that the proposed thresholding method can get
reliable results for random noise contained data
interpolation with high efficiency.

Introduction

In seismic exploration, field data often violates the
Shannon/Nyquist sampling theorem due to influences of
acquisition costs, bad traces, topography and noise. The
incomplete data may affect results of 3D surface-related
multiple elimination (Berkhout and Verschuur, 1997),
wave-equation pre-stack depth migration (Claerbout, 1971)
and time-lapse imaging (Smith et. al., 2012), thus
interpolation must be adopted to provide complete
wavefield information. Among various interpolation
methods, prediction filter methods (Spitz, 1991) are mainly
target at regular sub-sampled data; wave-equation based
methods (Ronen, 1987; Stolt, 2002) call for underground
parameters and are time consuming; matrix/tensor
completion methods (Oropeza and Sacchi, 2011; Ma, 2013)
assume that seismic data can be restored by minimization
of the rank of matrix/tensor. Currently, sparse transform
based methods are the mainstream of interpolation, Fourier
transform (Liu and Sacchi, 2004; Xu et. al., 2005), Radon
transform (Herrmann et. al., 2000) and curvelet transform
(Herrmann and Hennenfent, 2008; Wang et. al., 2011; Cao
et. al., 2012) were chosen as the sparse transform to express
seismic data sparsely in their individual domains. Actually,
field seismic data inevitably contain different kinds of
noises, especially the random white noise. During the
above mentioned methods, few methods aim at random
noise contained seismic data interpolation. Oropeza and

Sacchi (2011) proposed a weighted reinsert method for
simultaneous interpolation and denoising, where the
random white noise can be removed by adjusting a
weighting factor. Similarly, Gao et. al. (2013) proposed a
weighted projection onto convex sets method (POCS) to
realize denoising and interpolation.

This abstract analyzed the mathematical model of
interpolation and claim that it is also suitable for random
noise contained data interpolation, the weighted POCS
method was proved to be a threshoding method for
unconstrained optimization model. A novel thresholding
method is also proposed to realize simultaneous
interpolation and denoising; the curvelet transform is
adopted as the sparse transform. Numerical examples on
synthetic and field seismic data demonstrate that the
proposed thresholding method can get reliable results for
random noise contained data interpolation.

Theory

Sparse transform based seismic interpolation can be
implemented by solving the following problem:

0
2
2-

2
1min xdx obs  , (1)

where  is the sampling matrix, obsd is the observed
data, x is the sparse expression of seismic signal in certain
transformed domain,  is a sparse transform, and  is the
regularization parameter to balance the fitting error and
sparsity of x , 0x denots the non-zero elements number

of x . Most interpolation methods for solving problem (1)
can only solve noiseless or high quality data; however,
problem (1) is also suitable for random noise contained
data interpolation. The key point of using problem (1) for
simultaneous interpolation and denoising is choosing a
proper  . Generally, small  corresponds to weak noise,
and large  corresponds to strong noise. Essentially,
thresholding in a transform domain is a denoising process,
 has some relationship to the energy of noise, the best
balance between accuracy of the solution and denoising can
be obtained when choosing a proper  . Because the noise
energy is different from data to data,  should be given
according to experience.

The POCS method is a commonly used method for
interpolation, however, it can not handle noise contained
data interpolatin. The weighted POCS method was
proposed in Gao et. al., 2013 to realize noise contained data
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interpolation. A weighting factor was induced during the
projection step of the original POCS method. In the
following, we prove that the weighted POCS method is
essentially a threshold method for problem (1) but the
regularization parameter  was amplified by the weighting
factor. Defining A and

0
2
22

)( xdAxxf obs 
 , the iteration scheme of

the thresholding method (Yang et. Al., 2012) for solving
)(min xf is
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where k is the thk thresholding parameter, N is the
iterative number, )(

k
H is the hard thresholding

operation. If we multiply operator  from the left side of
equation (2) , then iteration scheme (2) can be changes to

    k
obs

Tkkk ddxHxd
k

  
11 .

Since  2T and obsobs ddd  2 , the
above equation can be transformed to
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, (3)

where I is the identity matrix when kd is its vertor form
and the all-ones matrix if kd is treated as a matrix.

Defining   k
obs

k dIdu   , then equation (3) can

be changed to   kTk uHd
k



1 . Thus,

 
    kT

obs

k
obs

k

uHId

dIdu

k


 



 11

. (4)

This is the iteration scheme of the weighted POCS method
(Gao et. al., 2013). According to the above discussion, the
weighting factor  is actually the weighting factor in
problem (1). Therefore, the weighted POCS method equals
to solve

0
2
22

1min xdAx obs 


 . (5)

We must indicate that the weighted POCS method is not a
projection onto convex set method when 1 . ku is the
corresponding time-space expression of

 kobs
Tk AxdAx  . When 1 , it changed to

  k
obs

k dIdu  , this is the projection of kd onto

convex  obsddd S . However, if 1 , ku will
not be a projection process, thus weighted POCS method is
actually a thresholding method for problem (1).

Based on the above analysis, we can realize simultaneous
interpolation and denoising by solving problem (1) if the
regularization parameter is proper. In the next, we
introduce a novel thresholding method to solve problem (1)
(Elad et al. 2005). The algorithm is as follows:

Step 1. Input the sampled data obsd , the sampling
matrix  , the sparse transform  , the maximum iterative
number N , and the least threshold  , 0k .

Step 2. Let the initial solution 00 d , then the residual

is obsdr 0 , the initial threshold


 obs
Tdmax0 .

Step 3. Calculate the prediction residual
kkk drr 1 , update the transform coefficients by

hard thresholding operation )( 11   kTk rH
k , and

update the iterative solution 11   kkd  .

Step 4. Update the residual 11   k
obs

k ddr , and
then reduce the threshold. If Nk  , turn to step 5,
otherwise, it turns to Step 3.

Step 5. Output the final solution Nf dd  .

In order to improve convergence of this algorithm, the
exponential reduction strategy of the thresholds which has
proved to be very fast for interpolation is adopted here
(Gao et. al., 2013).

Examples

The interpolation and denoising ability of the new
thresholding method is evaluated on the following
examples. For the first example, a synthetic data
containing additive random noise is used to test the
efficiency and accuracy of the proposed thresholding
method. The POCS method is used as the benchmark. A
synthetic random white noise contained data with SNR=
4.3049 db is shown in Figure 1(a). The time sampling
number is 701 with time sampling interval 4ms, the space
sampling number is 300 with trace distance 20 m. Figure
1(b) is a randomly sub-sampled version of Figure 1(a) with
SNR =1.5004 db. Parameters are the same: the least
threshold is 0.00035 and the maximum iterative number is
60. The restoration of the POCS method is shown in Figure
1(c) with SNR= 7.2361 db. Figure 1(d) is the restoration of
the proposed thresholding method with SNR= 17.8514 db.
The 50th trace of Figure 1(a), Figure 1(d) and the noiseless
data are plotted in Figure 2. The restored SNR of both
methods are shown in Figure 3. Based on these results, it
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can be conclude that the proposed thresholding method
result in much better results than the POCS method.

Figure 4(a) is a field data with 276 time samples and 232
traces, the time sampling rate is 4 ms and the trace distance
is 25 m, some noise is contained in the field data such that
the signal-noise-ratio should be improved; Figure 4(b) is
the F-K spectrum of Figure 4(a);Figure 4(c) is a randomly
sampled version of Figure 4(a) with 50% traces removed.
Figure 4(d) is the F-K spectrum of Figure 4(c), Figure 4(e)
is the restoration of the new thresholding method, and
Figure 4(f) is the F-K spectrum of Figure 4(e). The least
threshold is 0.04 and the maximum iteration number is 60.
It is obvious that the proposed thresholding method can
restore missing traces and remove noise simultaneously.
Deoising can be avoid after the proposed thresholding
interpolation.
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Figure 1: (a) Noisy synthetic data with SNR=4.3049 db; (b)
Sampled noisy data with SNR=1.5004 db. (c) Interpolation
result of the POCS method with SNR=7.2361db; (d)
Interpolation of the proposed thresholding method with
SNR=17.8514db.

Conclusions

In this abstract, we claimed that simultaneous interpolation
and denoising can be realized by choosing proper least
thresholds when thresholding methods were adopted. We
also demonstrate that the weighted POCS method is a
thresholding method for unconstrained problem (1) but the
regularization parameters are amplified by the weighting
factor. Additionally, a novel thresholding method is
introduced to realize simultaneous interpolation and
denoising. Numerical experiments demonstrate that the
proposed thresholding method can get acceptable results
for random noise contained data interpolation, and
denoising can be avoid after interpolation.

Acknowledgments

This work is supported by National Natural Science
Foundation of China under grant numbers 41204075,
11271349 and Natural Science Foundation of Hebei
Province under grant number D2014403007.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

 

 
The noised trace
The restored trace
The true trace

Figure 2: The 50th trace of Figure 1(a), Figure 1(d) and the
original noiseless data.
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Figure 3: Convergence diagram of noisy synthetic data.
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Random Noise Contained Seismic Data Interpolation via Thresholding Method

Figure 4: Noised contained field data (a) and its F-K spectrum (b); randomly sampled data (c) and its F-K spectrum (d);
Interpolation of the proposed method (e) and its F-K spectrum (f).
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