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1. Introduction

Seismic acquisition often violates the Shannon theorem 
because of the restrictions of investment, topography, noise, 
bad traces and so on. The under-sampled data will bring 
aliasing and artifacts which will influence results of migra-
tion (Liu and Sacchi 2004), de-noising (Soubaras 2004), 
multiple elimination (Naghizadeh 2009) and AVO analysis 
(Sacchi and Liu 2005). Signal processing based restoration 
methods, which can provide reliable wavefield for noisy data 
with fast convergence speed, got great development recently 
(Schonewille et al 2003, Liu et al 2004, Zwartjes and Gisolf 
2006). During these methods, sparsity of wavefield in some 
transformed domain (Herrmann and Hennenfent 2008, Wang 
et al 2011) is commonly used. Thus, solutions in a transform 
domain should be found at first, then transformed into time-
space domain.

Seismic data sampling can be expressed as

Φ =m d, (1)

where Φ denotes the sampling operator, m is the complete 
seismic data, and d is the sampled data. Because equation (1) 
is under-determined, wavefield restoration is an ill-posed 
problem (Herrmann and Hennenfent 2008). Based on the 
sparsity assumption, the sparse solutions in a transformed 
domain can be found by solving:

=
x

Ax d
min
s.t. ,

1
 

(2)

where Ψ=x m and ΦΨ=A H, Ψ  is a transform such that x is 
sparse. ΨH means its Hermitian transpose. Some commonly 
used sparse transforms are Fourier transform (Sacchi and 
Ulrych 1996, Liu et al 2004, Zwartjes and Gisolf 2006), Radon 
transform (Verschuur and Kabir 1995, Trad et al 2002), local 
Radon transform (Sacchi et al 2004, Wang et  al 2009) and 
curvelet transform (Herrmann and Hennenfent 2008). Because 
curvelets can compress curve-shape events excellently with 
no assumption of line events and time windowing, curvelet 
transform is adopted as the sparse transform in this paper. As 
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a multi-scale, multi-directional and anisotropic frame (Candes 
et al 2006), it was applied in seismic restoration by Herrmann 
and Hennenfent (2008). Readers can refer to Candes et al 
(2006) for more detailed information of curvelet transform.

Seismic restoration is time consuming, thus fast and robust 
methods are required to improve the computational efficiency 
(Trad 2009). Many strategies were proposed to solve problem 
(2) for seismic restoration: Iterative-reweighed least-squares 
method is applied to sparse solutions of problem (2) (Sacchi 
and Ulrych 1996). Abma and Kabir (2006) proposed a POCS 
method for irregular seismic interpolation. Herrmann and 
Hennenfent (2008) proposed an iterative soft thresholding algo-
rithm to solve an L1 norm constrained least square (Daubechies 
et al 2004). van den Berg and Friedlander (2008) developed a 
spectral projected gradient method (SPGL1) to find the sparse 
solution; Cao et al (2011, 2012) proposed a projected gradient 
method for a non-convex optimization model of wavefield 
restoration. These methods which belong to line-searching 
methods are efficient but easy to get local solutions, trust region 
method as another optimization strategy can provide globally 
convergent solutions for non-linear problems (Yuan 1993). For 
trust region method, a quadratic approximation of the objec-
tive function at current iteration point is built as a trust region 
sub-problem, then a descent direction is obtained by solving the 
sub-problem (Yuan 1993). Generally, trust region methods are 
based on L2 norm trust region, a L1 norm trust region method 
for sparse problems was proposed by Wang et al (2011) for 
seismic restoration; however, the computation speed is much 
lower than line-searching methods. Improving the efficiency of 
trust region method is the main topic of this paper. In this paper, 
a novel L1 norm trust region method is proposed in which the 
optimization model is simplified and a rapid projected gradient 
method for solving the sub-problem is proposed to improve the 
efficiency significantly. Numerical experiments demonstrate 
that the proposed method can reach excellent computation 
speed as line-search methods. It should be point out that this 
exposition aims to explore L1 norm trust region method as an 
interesting research avenue for seismic reconstruction.

2. Algorithm

Problem (2) is based on the sparsity of solutions, however, if 
each descent direction of (2) is sparse, then sparse solutions 
will be found quickly. In order to obtain sparse descent direc-
tions, trust region method should be adopt by using L1 norm 
as the trust region constraint. The original problem proposed 
in Wang et al (2011) is the L1 norm regularized model

λ= − +J x Ax d xmin ( )
1

2
,1 2

2
1 (3)

where λ is the regularization parameter. In order to find sparse 
descent direction of (3), its L1 norm trust region sub-problem 
should be solved:

Δ

+

≤

s H s g s

s

min
1

2
s.t. ,

T
k k

T

k1

 
(4)

where Hk and gk are the Hessian matrix and the gradient of 
J1 at the kth iterative point, s is the descent direction at cur-
rent point, and Δk is the trust region radius. Because the non-
differentiability, L1 norm in (3) and (4) should be replaced by 
its smooth approximation in numerical implementation, such 
as square root function, then the sub-problem is solved by its 
unconstrained form

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑τ ε Δ+ + + −s H s g s smin

1

2
,T

k k
T

i
i k
2 (5)

where the Lagrangian parameter τ is solved by Newton 
method (Wang et al 2011).

There are two shortcomings in this method. Firstly, the 
objective function of (3) is in-differentiable, thus its gradient 
and Hessian matrix must be obtained approximately by using a 
smooth approximation of L1 norm, this will affect the accuracy 
and increase computations. Secondly, similar smooth strategy is 
also adopted in the sub-problem (5), and the parameter τ is solved 
by Newton method which is time consuming. In all, this method 
costs much time and reduce the accuracy of solutions. How to 
improve the solution accuracy and computational efficiency of L1 
norm trust region method is the main topic of this paper.

The main merit of L1 trust region method is that the sparsity 
of the descent directions makes the sparse solutions obtained 
quickly. The contribution of L1 norm in problem (3) to get 
sparse solutions is very small, furthermore, the L1 norm in (3) 
makes the original trust region method hard to solved exactly. 
If it is removed, the least square problem can be solved easily 
and accurately, then the objective function can be simplified to

= −J x Ax dmin ( )
1

2
.2

2 (6)

Here the gradient and Hessian matrix of J x( ) can be found 
exactly; the sub-problem of (6) is the same as problem (4) in 
form:

φ

Δ

= +

≤

s s H s g s

s

min ( )
1

2
s.t. .

s
k

T
k k

T

k1

 
(7)

However, different from problem (4), Hk and gk in problem (7) 
are exact and easy to solve. In order to introduce the idea of 
trust region strategy, a classical algorithm framework of trust 
region method for solving non-linear problems is given as fol-
lows (Wang 2007):

Algorithm 1.

Step 1: Choose τ τ τ< < < <0 1 ,3 4 1  τ τ≤ ≤ <0 10 2 , give the initial 
feasible solution x0, the initial trust region step Δ >00 , and let 

=k 0.
Step 2: If the stopping condition is satisfied, then stop itera-

tion; otherwise, solving problem (7) to get the decent direction sk.
Step 3: Calculate the ratio rk. Update the iterative point:

⎧
⎨
⎩

τ= ≤
++x
x r

x s

if
otherwise

k
k k

k k
1

0
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Update the trust region radius:

⎪

⎧
⎨
⎩

⎡⎣ ⎤⎦Δ τ τ Δ τ
Δ τ Δ

∈ ≤
+

s r, if

[ , ] otherwise
k

k k k

k k
1

3 4 2

1

Step 4: Solve the gradient +gk 1 at +xk 1, and let = +k k 1; go to 
Step 2.

For the stopping condition, this algorithm will not stop 
until the residual reaches a threshold or the maximum itera-
tion number is reached. rk controls the updating of xk and Δk 

which is defined as 
φ φ

= − +
−

r
J x J x s

s

( ) ( )

(0) ( )
k

k k k

k k k
. The initial trust 

region step Δ0 is chosen empirically. Refer to Wang (2007) for 
detailed information about this method.

The efficiency of trust region method hinges on solving 
problem (7) efficiently. Birgin et al (2000) proposed a 
robust projected gradient method for constrained optimiza-
tion, here, it is adapted for solving problem (7). By defining 

= +f s s H s g s( )
1

2
T

k k
T  and its gradient as ∇f s( ), the projected 

gradient method is:

Algorithm 2.

Step 1: Give the initial direction s, the trust region step Δk, 
the minimal step length αmin, the maximal step length αmax, 

Figure 1. (a) Original data; (b) F-K spectrum of (a).

(b)

(a)

Figure 2. (a) Random sub-sampled data; (b) F-K spectrum of (a). AQ1

(b)

(a)
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the initial step length α α α∈ [ , ]0 min max , the sufficient decent 
parameter γ ∈ (0, 1), and back tracing allowed max number 
of iterations M. Calculate the initial projection =s P s( )S0 k  
(whereP s( )Sk  is the projection of s onto Δ= ≤S s s{ }k k1 ), the 
gradient of the objective function ∇f s( )0 , let =l 0.

Step 2: If the stopping criterion is satisfied, go to Step 8; 
otherwise, go to Step 3.

Step 3: Calculate the step length using the back tracing 
method:

Step 3.1: α α= l;
Step 3.2: Calculate the projection α= − ∇Δs P s f s[ ( )]l lk ;
Step 3.3: If ≤ ∈ −f s( ) maxj k M[0,min[ , 1]]  f(sl−j) + γ(s̄ −sl)T∇f 

(sl), turns to Step 4; otherwise, α α= /2, and turn to Step 3.2.

Step 4: Update the iterative point =+s sl 1 , and calculate 
the new gradient +gl 1.

Step 5: Calculate Δ = −+s s sl l1 , Δ = ∇ ∇+g f s f s( )- ( )l l1 .
Step 6: Update the step length:
If Δ Δ ≤s g 0T , α α=+l 1 max;
otherwise, 

α α α Δ Δ Δ Δ=+ s s s gmin{ , max{ , ( ) ( )}}l
T T

1 max min .

Step 7: = +l l 1, and go to Step 3.
Step 8: Let =Δs slk .
In algorithm 2, projections onto Δ= ≤S s s{ }k k1  can be 

calculated according to van den Berg and Friedlander (2008). 

Figure 3. (a) Restoration of TRSL1 method; (b) F-K spectrum of (a).

(b)

(a)

Figure 4. (a) Restoration of SPGL1 method; (b) F-K spectrum of (a).

(b)

(a)
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For more choice of parameters in this algorithm, refer to van 
den Berg and Friedlander (2008).

Remark. This method is named as TRSL1. Compared 
with the original method in Wang et al (2011), the objec-
tive function of problem (6) is differential and its gradient 
and Hessian matrix can be calculated exactly which will 
save computation and improve the accuracy of solutions. 
In addition, projected gradient method for solving sub-
problems is very efficient for solving (7). These improve-
ments make the proposed method suitable for large-scale 
computation.

3. Numerical results

The performance of the proposed method is evaluated on syn-
thetic as well as on real data. The synthetic data experiment aims 
to demonstrate its potential for large-scale computation; and the 
field data example can verify its ability for restoring field data.

Figure 5. (a) Restoration of ISTc method; (b) F-K spectrum of (a).

(b)

(a)

Table 1. Comparison of synthetic data restoration with TRSL1, 
SPGL1 and ISTc.

Methods CPU (s) Relative error SNR

TRSL1  337 0.2874 10.8309
SPGL1 268 0.2818 11.0010
ISTc 306 0.2794 11.0765

Figure 6. (a) The original data; (b) F-K spectrum of (a).

(b)

(a)
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3.1. Synthetic data example

Considering a seismic data with six layers, modeled with a 15 m 
receiver interval, 2 ms sampling interval and a source function 
given by a Ricker wavelet with central-frequency of 25 Hz. 
The dataset contains 256 traces with 256 time samples in each 
trace. The incomplete acquisition was simulated by randomly 
extracting 160 traces from 256 traces. The original data and its 
F-K spectrum are shown in figure 1; while the sampled data 
and its F-K spectrum are displayed in figure 2. SPGL1 method 
is robust and can get high precision results, IST with cooling 
(ISTc) is present in Herrmann and Hennenfent (2008), both of 
them are famous in seismic processing. The original L1 norm 
trust region method is too slow to contrast with these methods, 

so it can not make comparisons here. Thus, the proposed 
TRSL1 method is contrast with SPGL1 and ISTc method. In 
order to get comparable results, the inner loops number and 
outer loops number of TRSL1 are 5 and 3 respectively, res-
toration of TRSL1 is shown in figure 3. The max iteration of 
SPGL1 is 70; restoration with SPGL1 is shown in figure 4. 
For ISTc method, the inner loops are 5 and the outer loops are 
15, restoration of ISTc is shown in figure 5. The CPU time, 
relative error and SNR of these methods are given in table 1, 
where SNR is defined as = −/d d dSNR 10log10 orig 2

2
orig rest 2

2 

(dorig means the original data and drest is the restored data) and 

Figure 7. (a) The sampled data; (b) F-K spectrum of (a).

(b)

(a)

Figure 8. (a) Restoration of TRSL1 method; (b) F-K spectrum  
of (a).

(b)

(a)
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the relative error is −d d
dorig rest 2

orig 2
. It can be concluded 

from table 1 that, when getting the same level reconstruction, 
TRSL1 can reach the same computation speed as excellent 
line-searching methods.

3.2. Field data example

A marine data example is given to verify the ability of TRSL1 
for field data in this section. Figure 6 displays one shot and its 
F-K spectrum. It contains 200 traces with the first 0.6 s of data. 
The sampling rate is 2 ms with a receiver spacing of 15 m. 

The decimated data with 75 traces randomly removed and its 
F-K spectrum are shown in figure 7. For TRSL1 method, the 
inner loops are 5 and the outer loops are 3, restored data with 
TRSL1 and its F-K spectrum are shown in figure 8. the max 
iteration of SPGL1 is set as 70; restoration with SPGL1 and 
their F-K spectrum are given in figure 9. For ISTc method, the 
inner loops are 5 and the outer loops are 15, restored data with 
ISTc and its F-K spectrum are shown in figure 10. The CPU 
time, relative error and SNR of these methods are listed in 
table 2. Based on these results, TRSL1 method still can reach 
the similar CPU time of these line-searching methods when 
obtain the same level results.

The inner loop number and outer loop number of TRSL1 
are given according to experience, more information can refer 

Figure 9. (a) Restoration of SPGL1 method; (b) F-K spectrum of (a).

(b)

(a)

Figure 10. (a) Restoration of ISTc method; (b) F-K spectrum of (a).

(b)

(a)
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to Wang (2007). The initial trust region radius is related to 
the efficiency of this method, it must be carefully chosen. 
Generally, it should be increased with data scale and ampli-
tude of the data.

4. Conclusions

In this paper, an improved L1 norm trust region method which is 
based on sparsity of descent directions is proposed. The greatest 
difference between the proposed method and line-searching 
methods is the proposed method using sparse searching direc-
tions to get sparse solutions but not based on sparsity constraint 
of solutions. A simplified trust region model is given and the 
adopt method for solving sub-problem is suitable for large-
scale problems. Numerical experiments of synthetic and field 
data demonstrate that the proposed method can get comparable 
computation speed with line-searching methods, so L1 norm 
trust region method is feasible for seismic data restoration.

High dimensional restoration is more meaningful than 
2D restoration for 3D seismic exploration (Trad 2009). 2D 
examples are given here, but this method can be easily gener-
ated to high dimensional restoration. Besides the optimization 
methods, less redundancy transforms can also improve com-
putational efficiency, this is currently under consideration.
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