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In seismic exploration, regularized migration inversion of seismic data usually requires solving a weighted
least-squares problem with constrains. It is well known that directly solving this problem using some
decomposition techniques is very time-consuming, which makes it less possible for practical use. For
iterative methods, previous research is mainly on solving the inverse model in a full space. In this paper,
a robust subspace method is applied to seismic migration inversion with Gaussian beam representations
of Green’s function. The problem is first formulated by incorporating regularizing constraints, and then,
it is changed from full space to subspace and solved by a trust-region method. To test the potential of the
application of the developed method, synthetic data simulations are performed. The results show that this
method is very promising for ill-posed seismic migration inversion problems.
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1. Introduction

Seismic migration is the core of reflection seismology. How to solve ill-posed inverse problems
is one of the key problems in it. At present, seismic migration usually only yields an image of
the positions of geological structures, and it has invalid information for subsequent lithology
analysis and attributes extraction. To get an image with true amplitude, we suggest that seismic
inversion should be performed. In seismic migration, the reflectors are imaged, in the sense that its
position and shape are more correctly represented, but there is no attempt to recover information
about the material parameters of the subsurface. This difference represents the major distinction
between ‘migration’ and ‘inversion’ [2]. However, this distinction has blurred in recent years as
the more modern methods to migration do attempt to address the amplitude issue. Some migration
algorithms could handle relative amplitudes correctly in an inversion sense. We call those, which
use inversion techniques in migration to achieve true amplitude and high resolution, seismic
migration inversion.
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2 Z. Li and Y. Wang

Seismic migration inversion is usually described by the following equation [2]:

d(xg, xs, ω) = ω2
∫

�

R(x)

v2(x)
[G(x, xs, ω) + d(x, xs, ω)]G(x, xg, ω) dx, (1)

where d(x, xs, ω) is the scattered field, R(x) is the reflectivity model and G(x, xg, ω) is called
Green’s function. It is nonlinear because it has a term that contains the product of the unknown
reflectivity model R(x) and the unknown field d(x, xs, ω). However, in geophysical sense, it is
reasonable to assume that the scattered field d(x, xs, ω) is significantly smaller than the incident
field G(x, xs, ω). Therefore, the linearized version of Equation (1) can be written as the following
equation:

d(xg, xs, ω) = ω2
∫

�

R(x)

v2(x)
G(x, xs, ω)G(x, xg, ω) dx. (2)

According to Equation (2), we can form the following operator equation by combining all the
observation data over every pair (xg, xs):

d = L(R(x)). (3)

If an harmonic solution of Green’s function is adopted, the seismic migration inversion can be
efficiently performed by FFT (Fast Fourier Transform) or GRT (Generalized Randon Transform).
However, using this kind of method will generate great error when an inaccurate velocity model
is used or the depth is large. It would sound very good if we can find an exact inverse operator
for L at a low cost. However, in geophysics, this is a typical ill-posed problem and the discrete
matrix of L is singular; therefore, the inverse can hardly be determined. Alternatively, assuming
L is the discrete matrix of L, there are several solutions in practice:

(1) Conjugate approximation:

F = LT.

Note that conjugate approximation is the simplest form to approximate the inverse. However,
inversion according to it does not take into account the influence of coherent noise and neglects
amplitude errors due to losses and truncation. In some cases, the inverse can be very different
from the transpose, which will result in bad imaging quality. This method is almost always
used in practical situations because of its simplicity and efficiency.

(2) The inversion of the significant values in the eigen-value spectrum of a forward modelling
matrix:

F = YD−1
c XT,

where L = XDY T. This is called the singular value decomposition of L [6]. Matrix D is a
diagonal matrix containing the eigen-values of D and matrix D−1

c contains the inverted eigen-
values of which exceed a pre-specified threshold: all eigen-values smaller than this threshold
are set to zero. Hence, in F, the very small eigen-values are not inverted but set to zero. The
efficiency and accuracy would be the two main tricky problems when this method is applied
to very large-scale seismic data.

(3) Least-squares inversion [7]:

F = [LTL]−1LT.

We must declare the drawbacks of this operation [14]: (1) [LTL]−1 is much more ill-posed than
L, thus [LTL]−1 is highly sensitive to the perturbations in data; (2) huge computational cost.
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Optimization Methods & Software 3

(4) Tikhonov regularization migration:

F = [LTL + α�]−1LT,

where � represents the normalized spatial autocorrelation matrix of the noise and α equals
the signal-to-noise ratio for one temporal frequency component [15]. For white noise, � = I .
It may also turn to be very time-consuming when the scale of the problem becomes large.

As analysed above, all the present seismic migration inversion schemes have their own draw-
backs. In this paper, we firstly build up a new model for migration inversion to get better imaging
result. In this forward model, we do not use harmonic solution, but represent Green’s function
by a summation of Gaussian beams which can tackle with multiple arrivals and eliminate caustic
problem. Then, we accelerate the inversion using a subspace trust-region method. The subspace
method originated from optimization theory and is implanted into seismic migration inversion for
the first time. In Section 4, numerical examples are presented and followed by some discussion.

2. Seismic migration inversion

We cannot expect to solve the linear system (3) by algebraic strategy easily, because the discrete
matrix of L is usually badly conditioned. In addition, the noise and the band-limited effect cannot
be ignored when the seismic data are recorded. Due to the ill-posedness of Equation (3), regular-
ization is needed in order for the establishment of well-posedness to be satisfied. Regularization
techniques for a least-squares problem have been extensively studied [9,11,12]. For our problem,
we only consider the discrete least-squares problem of Equation (3):

min
R(x)

ψ(R(x)) := 1
2‖LR(x) − d‖2

2, (4)

where L is the discrete matrix of L. The standard Tikhonov regularization form is given by

min
R(x)

�(R(x)) := 1
2‖LR(x) − d‖2

2 + α�(R(x)), (5)

where α is the regularization factor which can be chosen by prior information or posterior calcula-
tion and �(R(x)) is a function whose role is to give some penalization to the unknown reflectivity
function R(x). Just as mentioned in the last section, when the reflection coefficients obey to
Gaussian distribution, � = I , that is to say �(R(x)) = 1

2‖R(x)‖2. And it will be like �(R(x)) =∑
i ln(1 + R(xi)

2/σ 2) when they obey Cauchy distribution and �(R(x)) = ∑
i |R(xi)| when they

obey Laplacian distribution. However, most of the time, the distribution of reflectivity is just
impossible to estimate. Therefore, the predefined regularization term may not fit the real situa-
tion. Considering this issue, we would like to find the regularization term in other new ways and
try to make it have more geological and geophysical meaning.

It is clear that the reflectivity function may be spiky and sparse [16]. We may naturally think
about l0 norm, but because of the numerical infeasibility of the l0 minimization problem, we
relax it to solve the approximation model based on l1 norm. A simple fact is that the l1 norm is
robust to eliminate outliers and large amplitudes. The presence of the l1 term also encourages
small components of R(x) to become exactly zero, thus promoting sparse solutions. This sounds
more meaningful in geology and geophysics. Therefore, in the following, we establish an l1 norm
regularization model for seismic migration inversion:

min
R(x)

�(R(x)) := 1
2‖LR(x) − d‖2

2 + α‖R(x)‖1. (6)

All that we perform below are applied to this new model, and its imaging result is compared with
other models.
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4 Z. Li and Y. Wang

2.1 Gaussian beam representations of Green’s function

Before proceeding to inversion, we first give out our formulas for Gaussian beam representations
of Green’s functions in Equation (2). Why we want to do this? The first reason is that the theory
that leads to an interpretation of the output in terms of a reflection coefficient breaks down at
caustics. This is the so-called caustic problems. The underlying mathematical reason for this is
that wave fields are no longer adequately described by a simple amplitude and phase A exp{iωτ }
in the neighbourhood of a caustic. In fact, ray theory at this level predicts infinite amplitude at
such points while the exact amplitude is finite [8]. In this case, no matter what remedial measures
are taken, the interpretation of the peak amplitude of the output on a reflector in terms of the
reflection coefficient is no longer valid. To fix this bug in ray-theoretic Green’s function, it is best
to simply use a better approximation of Green’s functions in the processing formulas; integrals
over Gaussian beams are one means of providing better quality Green’s functions.

The second reason is the problem of multiple arrivals. The form such as A exp{iωτ } can only
record one amplitude and one travel time for every shoot–receive pair. However, in practice, there
may be several rays that start from the same source point and through the same image point.
Integrals over Gaussian beams provide the opportunity to record multiple amplitudes and travel
times in multiple Gaussian beams. This makes more sense and approximates the practical scenario
better.

We begin with the representation of Green’s function in two dimensions (2D). For this case,
Green’s function with x′ (source point and initial point for the fan of Gaussian beams) and x (the
image point) can be written out as follows:

G(x, x′, ω) =
i
√

ωrw2
0

2v(x′)

∫
AGB(x′, x′′) exp{iωT(x′, x′′)}dp′′

x

p′′
z

, (7)

where

AGB(x′, x′′) =
√

v0(x′′)
Q(x′, x′′)

, T(x′, x′′) =
∫ s

0

ds′

v0(x(s′))
+ n2

2

P(x′, x′′)
Q(x′, x′′)

.

The amplitude AGB(x′, x′′) and travel time T(x′, x′′) can be obtained by a ray-tracing technique
with a pure imaginary number as the initial value. In the above, ωr is the reference frequency, and
w0 is the initial half-width of the Gaussian beams. A typical value for ωr is 2π × 10 Hz, and a
typical value for w0 is one wavelength at the reference frequency. p′′

x is the horizontal slowness
and p′′

z is the vertical slowness. P and Q are complex dynamic ray-tracing quantities and are
determined along the central ray as solutions of a system of dynamic ray equations. We can refer
to [3,8] for more details.

Similarly in 3D cases, Green’s function can be asymptotically approximated by the following
expression:

G(x, x′, ω) = iωωrw2
0

2πv3/2(x′)

∫
Dx

AGB(x′, x′′) exp{iωT(x′, x′′)}dp′′
x dp′′

y

p′′
z

, (8)

where

AGB(x′, x′′) =
√

v0(x′′)
det[Q(x′′(s))] , T(x′, x′′) =

∫ s

s0

ds′

v0(x(s′))
+ 1

2
qTPQ−1q.

Also, the amplitude AGB(x′, x′′) and travel time T(x′, x′′) can be obtained by the 3D ray-tracing
technique.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

lo
gy

 a
nd

 G
eo

ph
ys

ic
s 

] 
at

 2
3:

47
 2

7 
Ju

ly
 2

01
2 



Optimization Methods & Software 5

In such a manner, the transition from integral formulas to discrete sums will not lead to
evaluations of functions near a zero or infinity in the denominator. We can also record amplitudes
and travel times of multiple arrivals in terms of the summation. It is for the inversion formulas
that we develop the use of Gaussian beam representations of Green’s functions.

2.2 The gradient and Hessian of the model

To make it easy to be calculated by computer, we approximate ‖R(x)‖1 in Equation (6) by∑N
i=1

√
(R(xi), R(xi)) + ε, ε > 0, and N is the length of the vector R(x). For simplification of

notations, we let

�(R(x)) =
(

R(x1)√
R(x1)TR(x1) + ε

, . . . ,
R(xi)√

R(xi)TR(xi) + ε
, . . . ,

R(xN )√
R(xN )TR(xN ) + ε

)T

and

�(R(x)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε

(R(x1)TR(x1) + ε)3/2
0 0 · · · 0

0
. . . 0

...
...

0 · · · ε

(R(xi)TR(xi) + ε)3/2

... 0

... 0
...

. . .
...

0 0 · · · 0
ε

(R(xN )TR(xN ) + ε)3/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Straightforward calculation yields the gradient of � in migration inversion model (6):

g(R(x)) ≈ LT(LR(x) − d) + α�(R(x)), (9)

and the Hessian of � in a migration inversion model follows (6):

H(R(x)) ≈ LTL + α�(R(x)). (10)

With the gradient and Hessian information, the gradient-based iterative methods or the Newton-
type methods can be applied. In the following practice, for seismic data with different scales, we
will first estimate the product of the number of receivers and the length of each seismic trace and
denote it by S. Then, we will choose ε = S × 10−6 empirically.

3. Subspace trust-region method

Research about methods for solving ill-posed seismic migration inversion problems (6) is still very
limited. At present, most are based on the inverse Fourier transform or other types of transform
[1,4,10,20]. Others included two-step Monte Carlo methods [5], simple least-squares methods [7]
and conjugate gradient methods [9,15]. Trust-region methods have been recently shown another
useful regularization tool for seismic inversion [19] and have proved to be a kind of regularization
method [18]. These methods require solving a trust-region subproblem at every inner iteration
and accepting a new trial step within its trust region. Recently, subspace trust-region methods
were developed for solving large-scale nonlinear programming problems [13,21], but attentions
are paid mainly on well-posed problems. It is clear that these methods have potential applications
in seismic migration inversion.
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6 Z. Li and Y. Wang

3.1 Subspace trust-region model

Our subspace trust-region model for (6) is

min 
k(ξ) := gT
kξ + 1

2ξTHkξ ,

s.t. ‖ξ‖ ≤ �k ,

ξ ∈ Sk ,

(11)

where gk = LT(LRk(x) − d) + α�(Rk(x)), Hk = LTL + α�(Rk(x)), �k is the radius of the trust
region and Sk is a subspace which is chosen so that (11) can be solved cheaply.

3.2 Solution of a trial step in a 2D subspace trust region

In this subsection, we will give the choice of subspace Sk and an algorithm to solve (11)
cheaply [17]. Firstly, the gradient −gk should be included in the subspace. Secondly, Sk should
contain a sufficiently accurate approximation to the Newton direction −H−1

k gk. Due to the large
scale of the matrix, we should get an inexact Newton step sN

k by approximately solving the equation

Hks = −gk

with accuracy ηk:

HksN
k = −gk + rk

such that ‖rk‖/‖gk‖ ≤ ηk . Hence, we can select Sk as the 2D subspace

Sk = span(sN
k , −gk).

The remaining work is how to solve the subspace trust-region problem (11) efficiently. We
define

s1 = sN
k

‖sN
k ‖ (12)

and compute

s2 = −gk + (gT
ks1)s1, (13)

and then we set s2 = s2/‖s2‖ and S = [s1, s2] ∈ R
N2×2. Then, for any vector s ∈ Sk , there exists

a 2D vector β = [β1, β2]T ∈ R
2 that satisfies s = Sβ. Hence, problem (11) can be formulated as

a 2D trust-region subproblem:

min 
(β) := gT
kSβ + 1

2βTSTHkSβ,

s.t. ‖Sβ‖ ≤ �k .
(14)

With the above description, we can present the following algorithm for solving the subspace
trust-region model (11) in detail.

Algorithm 1 Solving the subspace trust-region problem

Step 1. Compute s1 and s2 by (12) and (13), respectively.
Step 2. Set s2 = s2/‖s2‖ and S = [s1, s2] ∈ R

N2×2.
Step 3. Solve the 2D trust-region subproblem (1) to get β.
Step 4. Set ξk = Sβ to be the solution of model (11).
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Optimization Methods & Software 7

3.3 A subspace trust-region method

Generally, a trust-region algorithm uses

rk = Aredk

Predk

to decide whether the trial step ξk is acceptable and how the next trust-region radius is chosen,
where

Predk = 
k(0) − 
k(ξk)

is the predicted reduction in the approximate model, and

Aredk = ψ(Rk) − ψ(Rk + ξk)

is the actual reduction in the objective functional.
Based on these definitions, we give the subspace trust-region algorithm for seismic migration

inversion.

Algorithm 2 A subspace trust-region algorithm for seismic migration inversion

Step 1. Choose parameters 0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0 and initial values
R0, �0 > 0. Set k := 1.
Step 2. If the stopping rule is satisfied then STOP; else, use Algorithm 1 to solve problem (11)
to get ξk.
Step 3. Compute rk .

Rk+1 =
{

Rk, if rk ≤ τ0. (15)

Rk + ξk, otherwise. (15′)

Choose �k+1 that satisfies

�k+1 ∈
{
(τ3‖ξk‖, τ4�k), if rk < τ2, (16)

(�k , τ1�k), otherwise. (16′)

Step 4. Evaluate gk and Hk; k := k + 1. Goto Step 2.

4. Numerical examples

To show the advantage of the proposed new method, in this section, we would like to compare it
with the three most popular methods which are being used in seismic migration inversion.

4.1 1D model

Suppose the velocity profile under a source point is as shown in Figure 1. Thus, it has a reflector
with reflectivity 0.1111 at the depth 500 m, also 0.0909 at 800 m, 0.0769 at 1200 m and 0.0667
at 1600 m, respectively. In traditional methods, they usually adopt Green’s function of constant
velocity and use FFT to accelerate the inversion. Figure 2(a) shows the result of this kind of
method. We can see that, this method can only achieve proper reflectivity when the depth is not
very large. With the depth increasing, its error in both amplitude and position will become larger
and larger. If we get more exact Green’s function using ray tracing and use the proposed method
in this paper to perform the inversion, the imaging result will be much better, which is shown in
Figure 2(b). Both the amplitudes and the positions are well inverted in Figure 2(b).
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8 Z. Li and Y. Wang
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Figure 1. 1D velocity profile.
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Figure 2. Fast transform inversion (a) and subspace trust-region migration inversion (b).

4.2 Fault model

Next, we will confirm the validity of the new algorithm to a fault model which is a common
type of structure. The velocities for the three layers in Figure 3 are 2000, 2500 and 3000 m/s
from top to bottom; 101 × 101 grids are adopted in the experiment, the offset is 40 m and the
temporal sampling is 0.002 s. The noise level is 0.01 in this experiment. Firstly, we apply Kirchhoff
migration to the synthetic data. Kirchhoff migration is the most popular method which is being
used in the oil exploration industry, because it is very fast. It uses the conjugate operator to
approximate the inverse of the forward modelling operator, then does the inversion inexactly
but efficiently. Figure 4(a) and (b) shows the result of Kirchhoff poststack time migration and
subspace trust-region migration inversion, respectively. It takes 0.89 and 4.83 s to perform the
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Figure 3. Fault velocity model.
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Figure 4. Kirchhoff migration (a) and subspace trust-region migration inversion (b).

migration, respectively. We can find that Kirchhoff migration only gives a blurred image, while
the latter one gives a very clear one, although the subspace trust-region method consumes more
time. The total computation amount of Kirchhoff migration is as much as that of one iteration in
the subspace trust-region method.

4.3 Marmousi model

Finally, let us come to a very familiar example in geophysics – the Marmousi model. This model is
extensively used to test the effectiveness of migration algorithms.We use a 122 × 384 sampled grid
version of these data. Solving the migration inversion model (4) yields the least-squares migration
method.And our method is applying the subspace trust-region method to solve migration inversion

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

lo
gy

 a
nd

 G
eo

ph
ys

ic
s 

] 
at

 2
3:

47
 2

7 
Ju

ly
 2

01
2 



10 Z. Li and Y. Wang
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Figure 5. Least-squares migration (a) and subspace trust-region migration inversion (b).

model (6). Figure 5(a) and (b) shows the result of least-squares migration and subspace trust-
region migration inversion, respectively. By comparing the imaging quality in the two figures, we
can discover that the resolution of our method is higher than that of the least-squares migration
method. Moreover, since we use the subspace technique to accelerate our method, we spend less
time than most least-squares migration methods. In this test case, our method takes 12.62 s, while
a projected BB (Barzilar-Borwein) method, which is a very efficient method to solve least-square
problems, takes 14.32 s.

4.4 Discussion

In this section, we find that the proposed method in this paper behaves better than many popular
migration algorithms. However, this is not enough. There are still several further research issues
for improvement, such as applying it to various seismic forward models, refining the forward
matrix by proper preconditioners, etc. Although this algorithm takes much more time than the
traditional Kirchhoff migration, its duration of calculation may be reduced a lot by designing
parallel computation algorithms, or we can concentrate our method only on the area we are
interested in (such as thin reservoir), and this can also apparently reduce computational complexity.

5. Conclusion

Regularized seismic migration inversion is a relatively new field which is worthy of exploration.
There is wide space for the application of good inversion algorithms. In this paper, we formulated
Green’s function in a new way and investigated a new method to solve seismic migration inversion
problems by applying a trust-region technique. The method applied a subspace technique to the
trust-region subproblem, which possesses not only the efficiency but also the global convergence.

The results of numerical experiments showed that the migration inversion method proposed in
this paper can yield images with true amplitude and better resolution. Therefore, we concluded
that our proposed algorithm is applicable for seismic migration inversion problems.
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