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Abstract. We consider seismic data regularization problems in this paper. Gaussian beam
decomposition model is proposed for seismic data representation. To solve the represen-
tation problem, an l0 quasi-norm minimization model with different smooth approxima-
tions is proposed. To solve the l0 quasi-norm minimization problem, a projected gradient
method with nonmonotone choice of iterative steps is developed. Numerical simulations
on one-dimensional and two-dimensional seismic imaging problems are performed to ver-
ify the feasibility of our methods.
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1 Introduction

In seismic exploration, the process of acquisition records the continuous wavefield
which is generated by the source. In order to restore the seismic data correctly,
the acquisition should satisfy the Nyquist/Shannon Sampling Theorem, i.e., the
sampling frequency should be at least twice of the maximum frequency of origi-
nal signal. However, in seismic acquisition, because of the influence of obstacles
at land surface, rivers, bad receivers, noise, acquisition aperture, restriction of to-
pography and investment, the obtained data usually does not satisfy the sampling
theorem. This means that the data are usually incomplete. A direct effect of the
limitations of the acquisition is the sub-sampled data will generate aliasing in the
frequency domain; therefore, it may affect the subsequent processing such as fil-
tering, de-noising, AVO (amplitude versus offset) analysis, multiple eliminating
and migration imaging [26, 28, 35].
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In order to remove the influence of sub-sampled data and to restore the full
data from incomplete data, the seismic data regularization technique is often used,
e.g., f-x predictive method [19, 20], f-k domain method [12], interpolation meth-
ods relying on the t-x domain predictive filters [5, 6, 10], sparse optimization and
regularization [28,29,35], linear Radon transform method [24] and curvelet trans-
form method [13, 18]. Let us denote by m the original seismic wavefield, d the
sampled data, and L the sampling operator, the data regularization can be written
as (see [1])

Lm D d: (1.1)

Our purpose is to restorem from the sampled data d . Since d is usually incomplete
andL is an underdetermined operator, this indicates that there are infinite solutions
satisfying the seismic imaging equation (1.1). Hence, seismic data regularization
is an ill-posed inverse problem. Usually, we expect the signalm can be represented
by linear combination of some functions, e.g., m D ‰c, where c is a coefficient
vector and ‰ the representing matrix with each column a transform vector. Then,
solving (1.1) is equivalent to solving

L‰c D d: (1.2)

Therefore, if the representing matrix ‰ exists, the coefficient vector c can be ob-
tained through solving the equation (1.2), hence the wavefield could be restored
from sampled data.

2 Gaussian beams decomposition

An important step for seismic data regularization is proper representation of the
wavefields using some transforms, e.g., Radon transform, curvelet transform and
so on. Then the wavefields can be represented with proper bases. In the far field
assumption, the recorded wavefield can be considered as plane waves. Therefore,
the wavefields interpolation could be decomposed with Gaussian beams [2, 14].

A Gaussian beam has the form

 .x; t/ D c expŒi2�!.x � xc C pxt /� expŒ�c0.!=w/2.x � xc C pxt /2�; (2.1)

where c is the amplitude, xc is the central location, c0 is a constant, ! is the wave
frequency, px is the slowness and w is the width of the Gaussian beam.

In two dimensions, a Gaussian beam has the form

 .x; t/ D c.t/ expŒi2�!.x � xc C pxt /�

� expŒ�c0.!=w/2.x � xc C pxt /TM.t/.x � xc C pt/�;
(2.2)

where c.t/ is the amplitude, x and xc are in two dimensions, M.t/ is a two-di-
mensional matrix and other parameters are as mentioned above.

Brought to you by | Technische Universitaet Berlin
Authenticated | 141.23.107.250

Download Date | 8/20/12 11:58 AM
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Following the Gaussian beam function, the initial wave field can be given as

 .x/ D expŒi2�!.x � xc/� expŒ�c0.!=w/2.x � xc/2�: (2.3)

Again, xc is the central location, c0 is a constant, ! is the wave frequency and
w is the width of the packet. The field  .x/ is called a Gaussian wave packet in
one-dimensional case.

In two dimensions, a practical parameterized Gaussian wave packet can be for-
mulated as follows (see [2]):

 
 .x/ D expŒi2��T .x�xc/� expŒ�.x�xc/TR�ƒ.˛; ˇ; �/R
�1
� .x�xc/�; (2.4)

where x, xc and � are in two dimensions, R� with � the angle of orientation is the
rotation matrix defined by

R� D

"
cos � � sin �
sin � cos �

#
;


 is the set of parameters given as 
 D .xc ; �; ˛; ˇ; �/, ƒ.˛; ˇ; !/ is a diagonal
matrix defined by

ƒ.˛; ˇ; !/ D

"
ln.16/k!k2 0

0 ln.16/k!k2=.˛2ˇ2/

#
;

where the parameters ˛ and ˇ define the number of oscillations within a half-width
and the ratio of the Gaussian widths perpendicular to and along the direction of
oscillation. Figures 1 and 2 illustrate the Gaussian beams in one dimension and
two dimension cases, respectively. Figure 3 shows us a collection of Gaussian
wave packets in different rotation angles.

Given a wavefield data d.x/ (x D Œx1 x2�T ) and a collection of wave pack-
ets  
 , we aim to decompose the data in the following form:

d.x/ D
X



c
 
 .x/; (2.5)

where c
 for all chosen parameters 
 2 � is a collection of coefficients, � is the
set for all possible parameters 
 D .xc ; �; ˛; ˇ; �/.

We could write the above equation into a compact form

d D Ac; (2.6)

where A is the discrete operator forming by the wave packets  
 .x/, c D ¹c
º
and d is the data with each column a vector. Now, a key issue in decomposition
of data is solving the vector coefficient c given data d and proper forming of the
operator A.
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Figure 1. A Gaussian beam in one dimension: (a) one oscillation within a half-width;
(b) two oscillations within a half-width.

(a) (b)

Figure 2. (a) and (b) represent Gaussian beams in two dimensions in different angles.

3 Regularization model

Solving for the coefficient vector c D ¹c
º, the proper inversion model is required.
It is evident that the Tikhonov regularization model in general form ([15, 22, 23])

J �.c/ WD
1

2
kAc � dk2l2 C ��.c/ (3.1)

with particular choice of the stabilizer�.c/works for this purpose, where � > 0 is
the regularization parameter. For some special mathematical physics problems, the
above regularization model follows the Lavrentiev’s regularization [16]. The above
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Figure 3. A collection of Gaussian wave packets in different rotation angles.

equation is equivalent to solving an equality-constrained minimization problem

min�.c/
s:t: Ac � d D 0

(3.2)

for noiseless data d or a constrained minimization problem

min�.c/
s:t: kAc � dkl2 � �

(3.3)

for inexact data d . In the following, we consider some specific sparse regulariza-
tion models which will be used for regularizing data in data space.

4 Sparseness constraints

4.1 lp-lq norms constraint

The lp norm in vector space RN for an vector v is defined as

kvklp D

�X
i

jvi j
p

� 1
p

; 0 � p � 1:
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The energy function
m.v; u/ D

X
i

jvi � ui j
p

defines a metric. Different metric yields different scale of the functions.
Both the energy of the residual r D Ac � d and the energy of the coefficient of

c could be properly scaled using different norms. For example, the regularization
model in general form could be formulated as an lp-lq model [30]

J ˛Œc� WD
1

2
kAc � dk

p

lp
C
˛

2
kD.c � c0/k

q

lq
! min; (4.1)

for p; q � 0, c0 a priori value and D a scale operator. If p D q D 2, (4.1) is the
standard Tikhonov regularization in finite spaces; if p D 2 and q D 1, (4.1) is the
commonly adopted sparse (spiky) regularization, especially frequently refereed in
geophysical community, and also the LASSO problem in linear regression where
they refer it as the l1-constrained fitting for statistics and data mining [21]. Clearly,
people favor l2-l1 model because that the objective function is convex and deriva-
tives of J ˛ can be easily made, so solving methods could be easily developed.
However, the l1 constraint is not the sparsest “norm”.

4.2 l0 quasi-norm constraint

A best model to satisfy the “sparsity” requirement is the equality constrained min-
imization model with l0 quasi-norm:

kckl0 ! min; s:t Ac D d: (4.2)

This corresponds to choosing �.c/ D kckl0 in (3.2), where k � kl0 is defined as

kvkl0 D lim
p!0
kvklp D lim

p!0

�X
i

jvi j
p

� 1
p

:

Assuming that 00 D 0, we could define

kvkl0 D ¹num.v ¤ 0/; for all v 2 RN º;

in which, num.v ¤ 0/ denotes the cardinality of nonzero components of the vec-
tor v. In (4.2), the equality constraint is used, which means that the equation is
consistent even with noisy data d . This is because practically the true signals are
mixed with noises simultaneously and it is difficult to separate them sometimes.
The equality constrained minimization model with l0 quasi-norm could be relaxed
into an unconstrained minimization problem

Qc D arg min
c
kckl0 C �kAc � dk

2
l2
; (4.3)
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where � � 0 is the Lagrangian multiplier. Minimization of kckl0 means the num-
ber of nonzero values of c to be minimal. It is well known that minimization of
kckl0 is an NP-complex problem in combinatorial optimization, which indicates
that optimization algorithms solving the problem cannot be finished in polynomial
times. Hence this model is doomed to be infeasible in practice.

To overcome this NP-complex problem, people favor approximation of the l0
quasi-norm minimization problem by an l1 norm as discussed in Section 4.1, i.e.,
instead of (4.2) and (4.3), one solves

kckl1 ! min; s:t Ac D d (4.4)

or
Qc D arg min

c
kckl1 C �kAc � dk

2
l2
: (4.5)

Solving (4.4) or (4.5) is easy as the objective function is convex, but in other
words, solving the true l0 quasi-norm optimization is superior to the l1 norm op-
timization though both methods can yield sparse solutions. To maintain this prop-
erty, we consider approximation of l0 quasi-norm minimization problem. Let f .t/
be an one-variable derivable and convex function satisfying

lim
t!0

f .t/ D 0 or 1; (4.6)

lim
t!1

f .t/ D 1 or 0: (4.7)

If one limit of the above condition is satisfied, then another condition can be easily
satisfied by setting a new f .t/ as 1� f .t/. Therefore, for a single variable t , its l0
quasi-norm can be defined via f .t/

ktkl0 D f .t/ or ktkl0 D 1 � f .t/: (4.8)

For a given vectorized function t 2 RN , its l0 quasi-norm can be defined via f .ti /,
i D 1; 2; : : : ; N ,

ktkl0 D

NX
iD1

f .ti / or ktkl0 D
NX
iD1

.1 � f .ti //: (4.9)

To realize the above definition of l0 quasi-norm, we usually introduce other
parameters to specify some specific computable functions. A familiar function is
the reverse Gaussian function:

f� .t/ D 1 � exp.�t2=.2�2//;

where the parameter � controlling the width of the Gaussian wave. This function
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8 Y. F. Wang et al.

satisfies the following properties:

(a) f� .t/ is derivable and monotone,

(b) f� .t/ tends to the l0 quasi-norm when � tends to 0, i.e.,

lim
�!0

f� .t/ D

´
0; t D 0,
1; t ¤ 0.

(4.10)

A plot of the function is shown in Figure 4a. Thus, we can construct a continuous
function to approximate the l0 quasi-norm, and then solve the optimal solution. In
this way, problem (4.2) is approximated by

minJ� .c/ WD
NX
iD1

f� .ci /; s:t: Ac D d: (4.11)

Other functions could be also applied. For example, solution of the differential
equation (DE)

dg.t/ D g.t/.1 � g.t//dt (4.12)

may serve for our purpose. It is ready to see that a solution of the above DE can
be written as g.t/ D et=.et C const/. If we set the boundary conditions to the DE
(4.12) to be g.0/ D 1=2, we obtain const D 1. So, the function g.t/ could be

g.t/ D
1

1C e�t
; (4.13)

which is a sigmoid curve, satisfying limt!1 g.t/ D 1. Therefore, we can con-
struct a sigmoid-like curve function f� .t/ satisfying the conditions (4.6) and (4.10)

f� .t/ D
1

1C e�jt j=�
: (4.14)

When � approaches zeros, the above function approximates ktkl0 sufficiently.
A plot of the function is shown in Figure 5a. It is immediately to see that

Qg.t/ D 2 �
1

g.t/
D 1 � e�t (4.15)

satisfies limt!1 Qg.t/ D 1 and Qg.0/ D 0. Therefore, this function may work bet-
ter than g.t/ in the construction of the approximation function of l0 quasi-norm.
Therefore, we could formulate a new function Qf� .t/ as

Qf� .t/ D 1 � e
�jt j=� : (4.16)
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Figure 4. Approximation of l0 quasi-norm using different functions with an in-
creasing value of � : (a) f� .t/ D 1 � exp.�t2=2�2/ and (b) f� .t/ D 1 � g.t=�/ D
1 � sin.t=�/=.t=�/.
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Figure 5. Approximation of l0 quasi-norm using different functions with an increas-
ing value of � : (a) f� .t/ D 1

1Ce�jtj=�
and (b) Qf� .t/ D 1 � e�jt j=� .
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A plot of the function is shown in Figure 5b. It is illustrated from Figures 5a
and 5b that these two functions shares similar approximation degree to the l0 quasi-
norm.

Another quite simple example satisfying conditions (4.6) and (4.7) is the func-
tion g.t/ D sin t=t , which is quite similar to a Dirac ı function. It is evident that

g.t/ D

´
1; as t ! 0;

0; as t !1:

We introduce f� .t/ D 1 � g.t=�/ D 1 � sin.t=�/=.t=�/ with the controlling pa-
rameter � > 0 to realize the l0 quasi-norm, i.e.,

f� .t/ �

´
0; as � ! 0 and t � �;

1; as � ! 0 and t ¤ 0:

A plot of the function is shown in Figure 4b. However there are small oscillations
as � ! 0, this may cause problems in computation.

5 Solving methods

5.1 Previous solution methods for finding a sparse solution

There are a lot of numerical methods for finding a sparse solution of under-deter-
mined problems. Meanwhile, algorithms based on l1-norm minimization take a
big deal. For example, the basis pursuit denoising (BPDN) criterion [4,25] and the
least absolute shrinkage and selection operator (LASSO) [21] are well studied in
literature. The BPDN problem with kAc � dk2

l2
D ı D 0 (ı is the upper bound of

the norm of the misfit) is equivalent to an equality-constrained linear programming
problem, a particular method called the interior point (IP) solution method can be
employed [31, 35]. However the IP solutions may be physically meaningless for
some geophysical problems [31]. In [9], the authors express the minimization of
the l2-l1 regularization problem with a nonnegativity-constrained quadratic pro-
gram and solve it by projected gradient methods. Recently, the spectral gradient-
projection method was developed for solving an l1 minimization problem with
l2 norm constraints [8]. The method relies on projected gradient descent step
(including nonmonotone gradient step [7, 32]) and root-finding of the parame-
ter � through solving the nonlinear convex, monotone and differential equation
�.�/ D �. This method can handle both noisy and noiseless cases. However, it is
clear that the root-finding method is just the famous “discrepancy principle” in reg-
ularization theory for ill-posed problems [33]. Relations between sparse recovery
problems involving compressive sensing and regularization theory are discussed
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Data regularization 11

in [35]. In addition, (orthogonal) matching pursuit method, a popular method in
engineering, can also be used for solving a sparse recovery problem [4, 25]. The
method greedily picks up a series of columns of the measurement matrix as atoms
and applies the Gram–Schmidt orthogonalization upon chosen atoms for efficient
computation of projections. Because this method is not optimized, it may cause
a lot of CPU time for convergence. Methods based on non-convex objectives are
studied in [11, 17]. In [17], the l0 quasi-norm is replaced by a non-convex func-
tion. However, initial values must be carefully chosen to prevent the local optimal
solution. Other methods such as iterative support detection method [36] and fix
point method are also developed. The article [3] makes a general review of dif-
ferent methods which may be applied in seismic data regularization. Recently, a
globally convergent trust region method with sparse constraint is developed for
data regularization [29].

5.2 Projected gradient methods for l0 minimization

Solving the minimization problem (4.11) requires that the solution must be in the
feasible set Sc D ¹c W Ac D dº. Therefore, a good initial guess value of the con-
strained minimization problem (4.11) is the one chosen from Sc . Since the null
space of A is not empty, there are infinite number of solutions in Sc . To choose a
particular solution, we consider the vector c can be represented by c D AT x. This
indicates that

x D .AAT /�1d; (5.1)

where AAT is full rank hence its inverse exists. This indicates that the solution
AT .AAT /�1d is a good initial value in Sc of the problem (4.11). Now, we try to
minimize the object function J� .c/. The Lagrangian function of (4.11) is

L.c; �/ D J� .c/ � �
T .Ac � d/; (5.2)

where � � 0 is the Lagrangian multiplier. The object function J� .c/ is differen-
tiable, thus the gradient and Hessian of L.c; �/ can be evaluated as

rcL D rcJ� � A
T � D

�
@f�

@c1
;
@f�

@c2
; : : : ;

@f�

@cN

�T
� AT �; (5.3)

r�L D d � Ac (5.4)

and

r
2L D

"
Hc �A

T

�A 0

#
; (5.5)
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12 Y. F. Wang et al.

respectively, in which, Hc D @rcL
@c

. Now it is clear that the solution satisfies the
following matrix-vector equations:

rcJ� � A
T � D 0; (5.6)

Ac � d D 0: (5.7)

However, both the gradient and the Hessian contain nonlinear functions. There-
fore, for finding an optimized solution, we consider the gradient descent method
for minimization of J� .c/ subject to equality constraints. The iterative formula
reads as

ckC1 D ck � �krckJ� ; (5.8)

where �k is the step-length along the search direction �rckJ� .
When we apply the gradient method to large scale problems, the most important

issue is which step-length will give a fast convergence rate. Therefore it is vitally
important to find what choices of �k require less number of iterations to reduce
the gradient norm to a given tolerance. We consider the nonmonotone gradient
methods which are proved to be effective both in theory and in seismic imaging
[27, 32, 34, 37], i.e., choices for the step-length �k are based on two formulas:

�1k D
.sk�1; sk�1/

.sk�1; yk�1/
; �2k D

.sk�1; yk�1/

.yk�1; yk�1/
; (5.9)

where yk�1 D rckJ� � rck�1J� , sk�1 D ck � ck�1, and our choice of the step-
length is given by

�k D ˇ1�
1
k C ˇ2�

2
k; (5.10)

where ˇ1 and ˇ2 are two positive parameters assigned by users.
To be sure that the solution is in the feasible set Sc , we use projection, which is

defined by
QckC1 D PSc .ckC1/; (5.11)

where PSc .x/ is defined by x WD x � AT .AAT /�1.Ax � d/.
Note that to maintain the approximation of J� .c/ to the l0 quasi-norm, we re-

quire � ! 0. We observe that the object function J� .c/ varies with changing of
the parameter � : the smaller value of � , the closer behavior of J� .c/ to the kckl0 .
For small values of � , J� .c/ is highly non-smooth and contains a lot of local mini-
mum, hence its minimization is not easy. On the other hand, for larger values of � ,
J� .c/ is smoother and contains less local minimum, and its minimization is easier.
Practically, we use a decreasing sequence values of � : for minimizing J� .c/ for
each value of � , the initial value of the minimization algorithm is the minimum
of J� .c/ for the previous value of � . Then we apply a projected nonmonotone
gradient method to solve for the coefficient vector c.
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6 Numerical experiments

6.1 Performance on the solution method for l0 minimization

We consider a sparse signal m 2 RN , which is measured by a random measuring
matrix L 2 RM�N (M < N ). Then d D Lm 2 RM is the measurement vector.
Every row of the matrix L can be seen as a measuring operator, whose inner prod-
uct withm is a measurement. In what follows,M < N means the number of mea-
surements is smaller than the length of the signal, thus it is an under-determined
discrete ill-posed problem. In our simulation, M is chosen as 140 and N equals
200. Our problem is to recover the original signal m from the measurement d .
Since the measurement is random, the data is randomly recorded.

We test three examples based on approximation of l0 quasi-norm:

� the reverse Gaussian function f� .t/ D 1 � exp.�t2=2�2/,

� sigmoid-like curve f� .t/ D 1
1Ce�jtj=�

,

� the function f� .t/ D sin.t=�/=.t=�/.

The original sparse random signals are shown in Figures 6–8 with legend
“o” lines, respectively. Using our nonmonotone gradient descent algorithm, the
restoration results (“+” lines) comparing with the original signal is shown in Fig-
ures 6–8, respectively. It is evident from the comparison that our algorithm is
robust in reconstruction of sparse signals. This example shows that our method
works for any random generated data using random measurement matrix. There-
fore, it would be a reliable and stable method for potential practical problems.

Remark 6.1. Our experimental experience infers us that the most stable function
approximating the l0 quasi-norm is the reverse Gaussian function, although the
above three functions yield similar recovery results. During testing on the func-
tion f� .t/ D sin.t=�/=.t=�/, the recovery results are not always stable. This is
because that there are oscillations of this function before � approaching zero (see
Figure 4b). These oscillations may lead to multiples just like random noise. There-
fore, this function is not recommended for applications.

6.2 One-dimensional seismic signal decomposition with Gaussian beams

The one-dimensional synthetic seismic simulations are very important in seismic
interpretation. We consider a simple synthetic seismogram d generated by a Ricker
wavelet convolved with an input signal with 5 peaks and 5 valleys (see Figure 9).
The theoretical Ricker wavelet

w.t/ D .1 � 2�2f 2mt
2/ exp.�.�fmt /2/
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Figure 6. Comparison of the true and recovered random signals using our solving
method for l0 minimization: f� .t/ D 1 � exp.�t2=2�2/.
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Figure 7. Comparison of the true and recovered random signals using our solving
method for l0 minimization: f� .t/ D 1

1Ce�jtj=�
.
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Figure 8. Comparison of the true and recovered random signals using our solving
method for l0 minimization: f� .t/ D sin.t=�/=.t=�/.
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Figure 9. Input reflectivity function.
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16 Y. F. Wang et al.

is used to perform a convolution, where fm represents the central frequency. The
central frequency of the Ricker wavelet is 15 Hz, the sampling interval is 0.001
second. The seismogram is given in Figure 10.

The data d.x/ is decomposed by a collection of wave packets  
 , i.e., d.x/ DP

 c
 
 .x/, where c
 for all chosen parameters 
 2 � is a collection of coeffi-

cients, � is the set for all possible parameters 
 D .xc ; !;w/. The Gaussian beams
used in this test are shown in Figure 11.

The restored data using Gaussian beams representation is shown in Figure 12.
Comparing the original signal (Figure 10) with the restored signal using Gaussian
beams (Figure 12) reveals that original signal can be fairly well represented using
Gaussian beams.
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Figure 10. Synthetic seismic data.

6.3 Layered wavefield regularization

Figure 13 is a seismogram of layered model with angle of inclination. We assume
again that there are abnormal traces, e.g., some traces are lost or no signal at all.
This gives the image in Figure 14. We aim to regularize the data to restore the
missed traces.

The data d.x/ (x D Œx1 x2�T ) is decomposed by a collection of wave packets
 
 , i.e., d.x/ D

P

 c
 
 .x/, where c
 for all chosen parameters 
 2 � is a col-

lection of coefficients, � is the set for all possible parameters 
 D .xc ; �; ˛; ˇ; �/.
Collection of Gaussian beams is shown in Figure 15.
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Figure 11. Gaussian beams.
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Figure 12. Restoration of original data using Gaussian beams decomposition.
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Using the l0 minimization model and our algorithm, the restored result is shown
in Figure 16. Evidently, the continuation of the data is guaranteed well. Comparing
the original data (Figure 13) with the restored data using Gaussian beams (Figure
16) reveals that the data (especially the reflective wave) can be reasonably well
represented using Gaussian beams, though the results is not significantly satisfac-
tory. In our future research, we will optimize choosing the Gaussian beams and
try to improve our algorithms to get better results.
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Figure 13. Seismogram of layered model.

7 Conclusion

We develop an l0 quasi-norm constrained regularization model for seismic data
regularization problems. Several smooth functions approximating l0 quasi-norm is
discussed. In building the regularization model, the Gaussian beams are collected
to represent the wavefields. Solving methods based on projected nonmonotone
gradient descent method are proposed. Finally, numerical simulations for one-
dimensional and two-dimensional seismic imaging problems are performed. The
results indicate the potential applications of our methods in the future.
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Figure 14. Random loss traces of data.
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Figure 15. A collection of Gaussian beams used for representation of wavefields.
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Figure 16. Restored data after regularization.
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