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In this article we discuss the determination of the aerosol particle size distribution
function using the particle spectrum extinction equation. This is an ill-posed
integral equation of the first kind, since we are often faced with limited or
insufficient observations in remote sensing and the observations are contami-
nated. To overcome the ill-posed nature, using the a priori information, we study
the inflection point regularization method and develop a conjugate gradient
projection method for solving the corresponding optimization problem. In our
work, regularization parameter can be considered as the number of inflection
points and their position. The algorithms for constructing an approximate
solution are described. Error estimates are also presented. Our numerical tests for
both the synthetic problem and practical problem are given to show the efficiency
and feasibility of the proposed algorithm.
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1. Introduction

It is well known that the characteristics of the aerosol particle size, which can be
represented as a size distribution function in the mathematical formalism, say n(r), plays
an important role in climate modelling. So, the determination of a particle size distribution
function becomes a basic task in the aerosol research [1,2]. Since Angström [3] first
suggested the relationship between the size of atmospheric aerosol particles and the
wavelength dependence of the extinction coefficient, the size distribution began to be
retrieved by extinction measurements.

For the sun-photometer, if the aerosols can be considered as globular particles, then
the attenuation of the aerosols can be written as the integral equation of the first kind:

�aeroð�Þ ¼

Z 1
0

�r2Qextðr, �, �ÞnðrÞdr, ð1Þ
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where �aero is themeasured aerosol optical thickness (AOT); r is the particle radius; n(r) is the
columnar aerosol size distribution (i.e. the number of particles per unit area per unit radius
interval in a vertical column through the atmosphere); � is the complex refractive index of
the aerosol particles; � is the wavelength and Qext(r, �, �) is the extinction efficiency factor
from Mie’s theory [4]. Since AOT can be obtained from the measurements of the solar flux
density with sun-photometers, one can retrieve the size distribution by the inversion of AOT
measurements through the above equation. This type of method is called extinction
spectrometry, which is not only the earliest method applying remote sensing to determine
atmospheric aerosol size characteristics, but also the most mature method thus far.

In practice, the sun-photometer CE 318, which we used to obtain observation data can
be modelled numerically by the operator equation of the first kind, can only supply four
aerosol modelled [5], i.e. only four observations are obtained, which are insufficient for the
retrieval of the particle size distribution function n(r) by solving Equation (1). Therefore,
numerical difficulty occurs. To overcome the oscillations in recovering of the particle size
distribution function n(r), various techniques have been developed, e.g. direct regulari-
zation methods and iterative methods [4,6,7]. In this article, we introduce some a priori
constraints to the solution. We first assume that the particle size distribution is always
nonnegative and piecewise-convex, and then we study the inflection point regularization
method and develop the conjugate gradient projection method for solving the
corresponding optimization problem.

2. Mathematical formulation

To begin with this section, we describe some assumptions for our analysis:

(C1) The particle size radius interval of interest is RX [rmin, rmax](¼[0.1, 2] mm) (the
reason can be found in [8]).

(C2) This aerosol particle size distribution function consists of the multiplication of two
functions h(r) and f(r) : n(r)¼ h(r)f(r), where h(r) is a rapidly varying function of r,
while f(r) is more slowly varying.

Since most measurements of the continental aerosol particle size distribution reveal
that these functions follow a Junge distribution [9], h(r)¼ r�(�þ1), where � is a shaping
constant with typical values in the range 2.0–4.0. Therefore it is reasonable to use h(r) of
Junge type as the weighting factor to f(r). In this article, we set �¼ 2.5.

Definition 2.1 Integral operator K from the parameter space F (C(R) or L2(R)) to the
observation space T (C(R) or L2(R)) is called the scattering operator of aerosol if for
every particle the size distribution function n(r)2F satisfies:

Kn ¼

Z rmax

rmin

�r2Qextðr, �, �Þ nðrÞdr;

where the kernel Qext is the extinction efficiency factor from the Mie’s theory.

In spherical coordinate system, if we denote z¼ 2�r/�, the extinction efficiency factor
can be written by

Qextðr, �, �Þ � Qextðz, �Þ ¼
2

z2

X1
n¼1

ð2nþ 1ÞReðan þ bnÞ,

2 Y.F. Wang et al.
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where an¼ an(z, �) and bn¼ bn(z, �) are the scattering coefficients from Mie’s theory. If we
assume that a boundary condition is homogeneous, then scattering coefficients can be
written by [2]

anðz, �Þ ¼
� nð�zÞ 

0
nðzÞ �  nðzÞ 

0
nð�zÞ

� nð�zÞ�0nðzÞ � �nðzÞ 
0
nð�zÞ

, bnðz, �Þ ¼
 nð�zÞ 

0
nðzÞ � � nðzÞ 

0
nð�zÞ

 nð�zÞ�0nðzÞ � ��nðzÞ 
0
nð�zÞ

,

where  nðzÞ ¼
ffiffiffiffiffiffiffiffiffiffi
�z=2
p

Jnþ1=2ðzÞ, �nðzÞ ¼
ffiffiffiffiffiffiffiffiffiffi
�z=2
p

Jnþ1=2ðzÞ � i
ffiffiffiffiffiffiffiffiffiffi
�z=2
p

Nnþ1=2ðzÞ, Jnþ1/2(z) and
Nnþ1/2(z) are Bessel functions and Neumann functions of order nþ 1/2. For a given rapidly
varying function h(r), to simplify the problem, we can define a new operator A, which is
also a mapping of F to T :

A½ f � ¼ K½n� ¼ K½ fh� ¼ Kfð Þ½h� ¼

Z rmax

rmin

�r2Qextðr, �, �Þ hðrÞ f ðrÞdr¼
4

Z rmax

rmin

Að�; rÞ f ðrÞdr:

Then, using the equality Kn¼ �aero, whose right-hand side is interpreted as the measured
AOT and is always positive, we can obtain some properties for the operator K (and A):

THEOREM 2.2 The scattering operator of aerosol K (or A) is a linear, continuous, bounded
and injective operator. In addition, for any aerosol particle size distribution function n(r) (or
slowly varying function f(r)): (Kn)(�)4 0 (or (Af)(�)4 0) for all �4 0.

Remark 1 Obviously, operators K and A have the same property. Below we only discuss
the property of the operator A, which is also called the scattering operator of aerosol,
because all properties obtained for operator A are obviously correct for operator K.

For the attenuation problem, let us rewrite Equation (1) in the form of the operator
equation:

A f �

Z rmax

rmin

Að�, rÞ f ðrÞdr ¼ �aero: ð2Þ

It is well known that for an operator Equation (2), in which A(�, r) is a continuous
function, the problem is ill-posed. Actually, from another point of view for the aerosol
particle size distribution function retrieval problem, the ill-posedness arises because: (1) the
model operator is compact; (2) the observations contain noise and (3) the number of
observations is insufficient. These ill-posedness characteristics produce a kind of jump in
the solution space; i.e. instead of being centred on the true solution, the results may spread
over the whole parameter space.

Remark 2 Regularization is a necessary way to tackle the ill-posed nature of the inversion
process. In this article, an a priori information is that the solution is a nonnegative
piecewise-convex function. As proposed by us, the inflection point regularization method
bases on the variational regularization method because this method is easy to add the
a priori information. In our work, the regularization parameter can be considered as the
number of inflection points and their positions.

3. Approximate solution and its error estimation

Usually, instead of the exact data fA, ��g we are given an approximate admissible data
{Ah, ��} such that: the perturbed right-hand side ��2T and Ah is a operator of F to T ,

Inverse Problems in Science and Engineering 3
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which has the same properties as the operator A described in Theorem 2.2. Here the

admissible data {Ah, ��} are described by two methods:

(M1) kAh�AkF!T 4 h, k�� � ��kT 4 �, h, �5 0. Denote the pair of errors �¼ (h, �).

(M2) |Ah(�, r)�A(�, r) |4 h(�, r), j ��ð�Þ � ��ð�Þ j4 ~�ð�Þ, where hð�, rÞ, ~�ð�Þ50 for all

�2 (0,1) and r2R. Moreover, h(�, r) is a continuous function with res-

pect to the second argument r. Denote the pair of error-functions ~�ð�, rÞ ¼
ðhð�, rÞ, ~�ð�ÞÞ.

Suppose that, the exact solution �f belongs to the set of bounded piecewise-convex

functions eF (�F ). Titarenko and Yagola [10] proved that the set of bounded picecewise-

convex functions eF on some bounded segment R is a compact set in Lp(R)(15 p51).

According to Tikhonov et al. [11], the approximate solution f� for Equation (2) can be

accepted as any element in the set:

F
�eF ¼ � f 2 eF : kAhf� ��kT 4 �þ hk f k

�
: ð3Þ

But this set is not a convex set. In practise, if we can define C1¼
4
maxfk f k : f 2 eFg, the

approximate solution can be accepted as any element in the convex set:

F #eF ¼ � f 2 eF : kAhf� ��kT 4 �þ hC1¼
4
#
�
; ð4Þ

where #�#(�)! 0 as �! 0. In both cases, by Ivanov’s theorems [11,12], we can prove

that f� ! �f in F as �! 0, where �f is the accurate solution. If errors of the right-hand side

and the kernel of the scattering operator of aerosol were given by (M2), similar as

[11,13,14], then we have the following theorem.

THEOREM 3.1 Let C2¼ (rmax� rmin)maxr2R f(r) and ~hð�Þ ¼ maxr2R hð�, rÞ. The approxi-

mate solution f ~� can be accepted as any element in the set:

F 	eF ¼ �f ðrÞ 2 eF : jAhf� ��j4C2
~hð�Þ þ ~�ð�Þ ¼

4
	
�
; ð5Þ

i.e. 	! 0 (or f ~�!
�f) as ~�ð�, rÞ ! 0 for every fixed point r.

We now address the question about error estimation of the approximate solution. Let

FeF be any set of sets F �eF , F #eF and F 	eF . If we fix any approximate solution f�� 2 FeF of our

problem (2), which has perturbed operator and right-hand side, we can write error

estimation by: D1ð�Þ ¼
4
supfk f �� � f kF : f 2 FeF g. Obviously, we have the inequality:

k f �� �
�fkF 4D1ð�Þ. In practice, fixed approximate solution may be selected as any element

in the set FeF . Thus, in principle, we can find the error estimate before solutions of the

problem if we calculate the diameter of set FeF , i.e. D2ð�Þ ¼
4
supfk f1 � f2kF : f1, f2 2 FeF g.

Of course, we can estimate an optimal a priori error by D0ð�Þ ¼
4
inff�2FeF sup

fk f� � f kF : f 2 FeF g.
However, an error estimator of approximate solution can be considered as the error in

the domain of definition at every point. In this case, for every point r2R, the error

function can be written as: D1
ð�, rÞ ¼ supfj f �� � f j : f 2 FeF g, D2

ð�, rÞ ¼ supfj f1 � f2j :

f1, f2 2 FeF g and D0
ð�, rÞ ¼ inff�2FeF supfj f� � f j : f 2 FeF g.

4 Y.F. Wang et al.
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Therefore, for all approximate solutions f� 2 FeF we have inequalities:

k f� � �f kF 4D
ð�Þ and for all r2R: j f� � �f j4D
ð�, rÞ, where 
¼ 0, 1, 2. Moreover,
for every fixed point r, D
, D



! 0 as �! 0. So D
 and D
 are error estimates.

4. Finite-dimensional approximation

In this section, we discuss the finite-dimensional approximation for Equation (2). To
simplify, we divide the solution domain [rmin, rmax]� [�min, �max] into a uniform grid with
step sizes hr and h�. Sets of grid points are denoted as �r ¼ frng

N
n¼1 and �� ¼ f�mg

M
m¼1. The

values of functions f(r), �(�), A(�, r) and Ah(�, r) at grid point rn and �m are denoted by
f(rn)¼ fn, �(�m)¼ �m, A(�m, rn)¼Amn and Ah(�m, rn)¼ amn. Instead of the exact right-
hand side ��ð�Þ, the exact kernel of the operator A(�, r) and their discrete value at grid
point ��m, Amn, we are given vectors �̂� ¼ ð�

�
1, . . . , ��MÞ, �̂ ¼ ð�1, . . . , �MÞ and matrixes

[amn]MN, [hmn]MN such that: j ��m � �
�
mj4 �m, and jamn � Amnj4 hmn, n ¼ 1,N,m ¼ 1,M.

The finite-dimensional approximation of the set eF and FeF will be denoted as bF and bFeF .
Obviously, bFeF is a closed convex and bounded polyhedron in R

N. The element of bF is
denoted as f̂ðrÞ ¼ ð f1, . . . , fNÞ. Moreover, the discretization of the discrepancy functional
�ð f Þ ¼ kAhf� ��k

2
L2ðRÞ

can be obtained by (using the trapezoidal rule):

�̂ð f̂Þ ¼
XM
m¼1

XN
n¼1

amnfnh
n
r � �m

 !2

hm� , ð6Þ

Thus, for finding a unique element of the set bFeF ; we can solve a minimization

problem min
f̂2bFeF �̂½ f̂ �. In the end, instead of the finite-dimensional approximate solu-

tion f̂ðrÞ, we use a piecewise-linear function fN(r) such that: fNðrÞ ¼ fn þ
fnþ1�fn
rnþ1�rn

ðr� rnÞ,
where r 2 ½rn, rnþ1�, n ¼ 1,N� 1.

Remark 1 For the set (4) error estimation of the operator and the right-hand side can be
found by the formula: �2¼

4 PM
m¼1 �

2
mh

m
� and h2¼

4 P
m,n a

2
mnh

m
� h

n
r . In addition, when we solve

the minimization problem min
f̂2bF #eF �̂½ f̂ �, we can ignore the restriction kAhf� ��kT 4#,

which will not influence our result. Thus, we have min
f̂2bF #eF �̂½ f̂ � � min

f̂2Fb�̂½ f̂ �:

In fact, for some special compact set, we have a more effective method to find an
approximate solution [15]. First of all, we assume that there exist functions ’lnðrÞ, ’

u
nðrÞ,

f lNðrÞ ¼
PN

n¼1 ’
l
nðrÞ fn and f uNðrÞ ¼

PN
n¼1 ’

u
nðrÞ fn such that 8f ðrÞ 2 eF : f l

NðrÞ4 f ðrÞ4 fuNðrÞ
for all r2R. Notice that the aerosol particle size distribution function f(r) is always
nonnegative and using the properties of operators A and Ah, which are described in
Theorem 2.2, we have inequalities

ðAh �HÞ f lN 4Af lN 4Af ¼ �4 �� þ �, �� � �4 � ¼ Af4Af u
N 4 ðAh þHÞ f u

N;

where the operator H is defined by Hf¼
R
Rh(�, r)f(r)dr. Using decomposition functions

f lNðrÞ and f u
NðrÞ by f̂, and integrating the above inequalities, we can obtainXN

n¼1

�lm,nfn � �
�
m þ �m,

XN
n¼1

�um,nfn � ��
�
m þ �m, m ¼ 1,M, ð7Þ

where �lm,n ¼
R
R
ðAð�m, rÞ � hð�m, rÞÞ’

l
nðrÞdr and �um,n ¼ �

R
R
ðAð�m, rÞ þ hð�m, rÞÞ’

u
nðrÞdr.

For some special compact set (the set of monotonic functions, the set of concave

Inverse Problems in Science and Engineering 5
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functions, etc.), we can construct the formula of ’lnðrÞ and ’
u
nðrÞ, then the approximate

solution can be accepted for any element in the setbFGeF ¼ �f̂ 2 bF : bGf̂4 ĝ
�
, ð8Þ

where the matrix Ĝ and the vector ĝ are defined by inequalities (7).
It is easy to get the embedding: bFGeF 	 bF 	eF 	 bF �eF 	 bF #eF 	 bF . Below, for simplicity,

we only discuss the minimization problems min
f̂2bF �̂½f̂� and min

f̂2bFGeF �̂½f̂�.

In the end of this section, we discuss the error estimator of the approximate solution.

Instead of the a priori error estimator, here we use an a posteriori error estimator, which

can be calculate by D3(�)X k f u� f lkF and D3(�, r)X f u(r)� f l(r), where f l(r) is the lower

solution and f u(r) is the upper one. The method of construction of f l(r) and f u(r) will be

discussed in Section 5.1.3.

Remark 2 We do not use functions f lNðrÞ and f u
NðrÞ as the lower and the upper solutions

because we have only the approximate discrete solution f̂�, whose components are not the

basic functions for f lNðrÞ and f u
NðrÞ.

5. Inflection points method

In this section, we discuss how to find a quasi-solution of the operator Equation (2),

i.e. how to solve the minimization problem: min
f̂2bFðorbFGeF Þ �̂½f̂�. The existence of a quasi-

solution of this minimization problem can be obtained by the Weierstrass theorem [16].

Definition 5.1 Let ~r� ¼ r�1, . . . , r�P
� �

denote the vector of inflection points of the slowly

varying function f(r). The pair 
 ¼ ðP, ~kÞ will be called a regularization parameter of the

inflection point method, where P is the number of inflection point, and vector
~k ¼ k1, . . . , kPð Þ denotes their position. (In fact, it is their quasi-position, because it is

possible that an inflection point may not be any point of grid point. In this case, instead of

this inflection point, we use the grid point, which is the closest of the inflection point, i.e.

kp ¼ argmin
kp¼maxf2;kp�1g;N�1

j f ðrkp Þ � fðr�pÞj for every p ¼ 1; . . . ;P; where k0¼
4
0:)

Remark 1 If we a priori know the value of the regularization parameter (in fact, in this

case our problem can already be considered as a well-posed problem), we can obtain some

restrictions by this a priori information. Using these restrictions, we can solve the above

minimization problem easily. In this article, in order to a posteriori determine the

regularization parameter, we use a modified discrepancy principle, which are described

below.

5.1. In the case of P^ 1

Suppose that our solution has only one inflection point and denote the set of these

functions by bF . But, we do not know the form of the function before the inflection point

(convex or concave). Therefore, we have two cases. Now denote our set of approximate

6 Y.F. Wang et al.
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solutions by: bF ¼ cF 1ScF 1, where
c
F 1 ¼ f f : 9k 2 N, 14 k4N, 8n1 5 n2 5 k5 n3 5

n4 : fððrn1 þ rn2Þ=2Þ4 f ðrn1 þ rn2Þ=2, f ððrn3 þ rn4Þ=2Þ5f ðrn3 þ rn4 Þ=2g and
c
F 1 ¼ �cF 1.

5.1.1. Step 1: Given position of inflection point

Let r* be the inflection point and k be its position, i.e. k ¼ argmink¼2,N�1j f ðrkÞ � f ðr�Þj.

Then our matrix of restrictions can be written as

cF 1 ¼

�2f1 þ f2 4 0, n ¼ 1,

fn�1 � 2fn þ fnþ1 4 0, n ¼ 2, k� 1,

�fn�1 þ 2fn � fnþ1 4 0, n ¼ kþ 1,N� 1,

2fN�1 � fN 4 0, n ¼ N,

0BBB@
1CCCA

and cF 1 ¼ �cF 1. Using the conjugate gradient projection method [13,14] by this restriction,

we can compute minimizer of the optimization problem: min
f2bF 1[bF 1

�½ f �.

In order to find the solution of problem min
f̂2bFGeF �̂½f̂�, we must get the restriction matrix

Ĝ, i.e. find functions f lNðrÞ, f
u
NðrÞ, ’

l
nðrÞ and ’

u
nðrÞ. First of all, we discuss the case in the setc

F 1. Since we know the position of this inflection point, we denote

f l
NðrÞ ¼

f l1
N ðrÞ 14 r4 r�

f l2
N ðrÞ r�4 r

(
, f u

NðrÞ ¼
f u1
N ðrÞ 14 r4 r�

f u2
N ðrÞ r�4 r

�
:

Notice that, functions f l1N ðrÞ and f u1N ðrÞ belong to the set of convex functions. Contrarily,

functions f l2
N ðrÞ and f u2

N ðrÞ belong to the set of concave functions. First of all, we discuss the

function f l1
N ðrÞ. Using the definition of the convex-up function, we can obtain three

inequalities in [rn, rnþ1]: f ðrÞ5fn þ
fnþ1�fn
rnþ1�rn

ðr� rnÞ, n ¼ 1, k� 1, f ðrÞ4 fn�1 þ
fn�fn�1
rn�rn�1

ðr� rn�1Þ,

n ¼ 2, k, and f ðrÞ4 fnþ1 þ
fnþ2�fnþ1
rnþ2�rnþ1

ðr� rnþ1Þ, n ¼ 1, k� 2. Evidently, when n4 k the func-

tion f l1
N ðrÞ can be designed as the piecewise-linear function, which is connected by points

(rn, fn), i.e. (see Figure 1):

’ l1
n ðrÞ ¼

rnþ1 � r

rnþ1 � rn
r 2 ½rn, rnþ1�, n ¼ 1, k� 1,

r� rn�1
rn � rn�1

r 2 ½rn�1, rn�, n ¼ 2, k:

8><>: ð9Þ

For r4 r*, the function f u1
N ðrÞ can be designed as

f u1
N ðrÞ ¼

fn�1 þ
fn � fn�1
rn � rn�1

ðr� rn�1Þ r 2 ½rn, �nrn þ ð1� �nÞrnþ1�,

fnþ1 þ
fnþ2 � fnþ1
rnþ2 � rnþ1

ðr� rnþ1Þ r 2 ½�nrn þ ð1� �nÞrnþ1, rnþ1�,

8>><>>:
where �1¼ 1, �k�1¼ 0 and �n¼�( fn�1� 2fnþ fnþ1)/(fn�1� fn� fnþ1þ fnþ2) as

n ¼ 2, k� 2. Similarly, f l2
N ðrÞ can be defined by formula (9) and f u2

N ðrÞ can be defined

as f l1
N ðrÞ.

Inverse Problems in Science and Engineering 7
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Similarly, we can also get the formula for ’lnðrÞ and ’
u
nðrÞ in the case of cF 1. Finally, we

can get a more accurate approximate solution by solving the optimization problem
min

f̂2bFGeF �̂½f̂�.

5.1.2. Step 2: Search for a position of an inflection point

Here, we use the enumeration method. It means that we assume every grid point (with the
exception of initial point and end point) to be its inflection point. Then, at every inflection
point we can construct the corresponding matrix of restrictions. After calculating all
discrepancy functionals, we choose their minimum. We consider that the inflection point
corresponding to the minimum discrepancy functional is a real inflection point. Notice
that in the one-dimensional case we need to solve N linear programming for finding the
inflection point.

5.1.3. Step 3: Construct a lower solution f l(r) and an upper solution f u(r)

Similarly, we denote the lower and upper solutions as

f lðrÞ ¼
f l1ðrÞ 14 r4 r�

f l2ðrÞ r�4 r

�
, f uðrÞ ¼

f u1 ðrÞ 14 r4 r�

f u2 ðrÞ r�4 r

�
:

Denote the component of f lNðrÞ and f uNðrÞ as f lnðrÞ ¼
4
ð f lNðrÞÞn and f u

n ðrÞ ¼
4
ð f uNðrÞÞn. Then

according to convexity of the function f ðrÞ 2 FeF and boundedness fn5f l1
n ðrÞ, n ¼ 1, k, and

fn 4 f u2
n ðrÞ, n ¼ kþ 1,N, we know that in the interval [rn, rnþ1], the function f(r) is greater

(less) than the straight line, which was connected by points ðrn, f
l1
n Þ and ðrnþ1, f

l1
nþ1Þ

(connected by points ðrn, f
u2
n Þ and ðrnþ1, f

u2
nþ1Þ). Thus for any r2 [rn, rnþ1], we have

f l1 ðrÞ ¼ f l1n þ
f
l1
nþ1
�f

l1
n

rnþ1�rn
ðr� rnÞ as n ¼ 1, k and f u2ðrÞ ¼ f u2n þ

f
u2
nþ1
�f

u2
n

rnþ1�rn
ðr� rnÞ as n ¼ kþ 1,N.

Now, we discuss how to construct functions f l2 ðrÞ and f u1 ðrÞ. At first, we discuss a function
f u1 ðrÞ (Figure 2).

Definition 5.2 For any convex function f ðrÞ 2 FeF and any index n ¼ 1, k� 1, there exists
a so-called right tangent index nþ such that: for a straight line, which connects by grid
points (rn, fn) and ðrnþ , f

l1
nþÞ, we have two requirements: (1) in the interval [rmin, rmax],

r

fN (r)

Figure 1. Functions f u
NðrÞ (�
�) and flNðrÞ (�i�), which were constructed by N-dimensional

discrete approximate solution fN(r).

8 Y.F. Wang et al.
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the function f l1 ðrÞ is located under the given line; (2) the given line does not pass the grid

point ðrnþ�1, fnþ�1Þ. This given line will be called the right tangent of the function f l1 ðrÞ.

Remark 2

(1) Similarly, for any n ¼ 2, k we can define a left tangent index n� ¼ 1, k� 1 and a

corresponding left tangent line of function f l1ðrÞ.
(2) In fact, the right and left tangent lines of function f l1ðrÞ are straight lines, which are

connected by the point (rn, fn) and vertex of the polyhedron, which is the domain of

definition of the function f l1ðrÞ. Of course, it is possible that choices of vertex of the

polyhedron are not unique. Then, we choose the grid point, which is the closest to

the point (rn, 0).

Obviously, in [rmin, rn] all functions f ðrÞ 2 FeF are less than the right tangent line of the

function f l1 ðrÞ, which connects by grid points ðrn, f
l1
n Þ; and in [rn, rmax], they are less than the

left tangent line. Thus, f r1 ðrÞ can be defined as:

f u1ðrÞ ¼
f u1n þ �nðr� rnÞ, r 2 ½un, �nrn þ ð1� �nÞrnþ1�,

f u1
nþ1 þ 
nþ1ðr� rnþ1Þ, r 2 ½�nrn þ ð1� �nÞrnþ1, rnþ1�,

(
where �n ¼ ð f

u1
n � f l1n�Þ=ðrn � rn�Þ, 
n ¼ ð f

l1
nþ � f u1n Þ=ðrnþ � rnÞ as n ¼ 1, k� 1, and �1¼ 1,

�k�1¼ 0, �n ¼ ½�n � ð f
u1
nþ1 � f u1n Þ=ðrnþ1 � rnÞ�=ð�n � 
nþ1Þ as n ¼ 2; k� 2.

Remark 3 In practice, for simplicity, instead of the parameter �n we can use a constant.

For example: �1¼ 1, �k�1¼ 0, and �n� 0.5 for n ¼ 2, k� 2.

Similarly, the function f l2ðrÞ can be defined as

f l2 ðrÞ ¼
f l2n þ �nðr� rnÞ, r 2 ½rn, �nrn þ ð1� �nÞrnþ1�,

f l2nþ1 þ 
nþ1ðr� rnþ1Þ, r 2 ½�nrn þ ð1� �nÞrnþ1, rnþ1�,

(
where �n ¼ ð f

l2
n � f u2n�Þ=ðrn � rn�Þ, 
n ¼ ð f

u2
nþ � f l2n Þ=ðrnþ � rnÞ as n ¼ k,N� 1, and �k¼ 1,

�N�1¼ 0, �n ¼ ½�n � ð f
l2
nþ1 � f l2n Þ=ðrnþ1 � rnÞ�=ð�n � 
nþ1Þ as n ¼ kþ 1,N� 2.

rnrnrn

f (r)

u
nf (r)
l
nf (r)

Figure 2. The upper solution f u(r) and the lower solution f l(r), which are constructed by discrete
functions fun and f l

n (
, i). Right and left tangent lines of function f l(r) are denoted by - - -.

Inverse Problems in Science and Engineering 9
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5.1.4. Step 4: Calculate the error estimation of the approximate solution

After constructing lower and upper functions f l(r) and f u(r), we can estimate an error of
the approximate solution by two methods:

(1) maximum estimation of an error in space C:

D3
ð�Þ ¼ max

r
f uðrÞ � flðrÞ
� �

¼ maxff u1
2 � f l1

2 � �1ð
2ðr2 � r1Þ � f l1
2 þ f l1

1 Þ,

max
n¼2,k�1

ð f u1
n � f l1n þ ð1� �nÞð�nðrnþ1 � rnÞ � f l1nþ1 þ f l1

n ÞÞ,

f u2
kþ2 � f l2

kþ2 � �kþ1ð
kþ2ðrkþ2 � rkþ1Þ � f u2kþ2 þ f u2kþ1Þ,

max
n¼kþ2,N�1

ð f u2n � f l2
n þ ð1� �nÞð�nðrnþ1 � rnÞ � f u2nþ1 þ f u2n ÞÞg:

(2) the estimation of an error of the function: D3(�, r)¼ f u(r)� f l(r), i.e. for
n ¼ 1, k� 1:

D3ð�, rÞ ¼

f u1n � f l1n þ �n �
f
l1
nþ1
�f

l1
n

rnþ1�rn

� 	
ðr� rnÞ, when r 2 LQ,

f u1nþ1 � f l1nþ1 þ 
nþ1 �
f
l1
nþ1
�f

l1
i

rnþ1�rn

� 	
ðr� rnÞ, when r 2 RQ,

8>>><>>>:
for n ¼ kþ 1,N� 1:

D3ð�, rÞ ¼
f u2i � f l2i þ �n �

f
u2
nþ1
�f

u2
n

rnþ1�rn


 �
ðr� rnÞ, when r 2 LQ,

f u2iþ1 � f l2iþ1 þ 
nþ1 �
f
u2
nþ1
�f

u2
n

rnþ1�rn


 �
ðr� rnÞ, when r 2 RQ,

8><>:
where LQ¼ [rn, �nrnþ (1� �n)rnþ1] and RQ¼ [�nrnþ (1� �n)rnþ1, rnþ1]. The value of
parameters �n and 
n are defined in the Section 3.1.4.

5.2. In the case of P` 1

In this section, we assume that our solution has P inflection points. Similarly, we denote:bF ¼ c
FPS cFP, where c

FP ¼
�
f : 9 ~k ¼ k1, . . . , kPð Þ : 8 rp�1 5 rn1 5 rn2 5 rp : ð�1Þpf ððrn1þ

rn2 Þ=2Þ � ð�1Þ
p
ð f ðrn1Þ þ f ðrn2 ÞÞ=2, for p ¼ 2,P

�
(i.e. before the first inflection point, our

solution is a convex function) and c
FP ¼ �cFP.

5.2.1. Step 1: Given position of inflection points

Let ~r� ¼ fr�pg
P
p¼1 be inflection points and ~k ¼ fkpg

P
p¼1 be their position, i.e. kp ¼

argmin
kp¼maxf2;kp�1g;N�1

j f ðrkp Þ � f ðr�pÞj for every p ¼ 1; . . . ;P; where k0¼
4
0. Then the

matrix of restrictions can be written as

cFP ¼

�2f1 þ f2 4 0, n ¼ 1,

fn�1 � 2fn þ fnþ1 4 0, n ¼ 2, k1 � 1,

ð�1Þpfn�1 � 2 � ð�1Þpfn þ ð�1Þ
pfnþ1 4 0, n ¼ kp þ 1, kpþ1 � 1,

p ¼ 1,P� 1,

ð�1ÞPfn�1 � 2 � ð�1ÞPfn þ ð�1Þ
Pfnþ1 4 0, n ¼ kP þ 1,N� 1,

ð�1ÞPfN�1 � 2 � ð�1ÞPfN 4 0, n ¼ N:

0BBBBBBBB@

1CCCCCCCCA

10 Y.F. Wang et al.
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and c
FP ¼ �cFP. Similarly, using the conjugate gradient projection method by this

restriction, we can solve the well-posed optimization problem: min
f2bFP[bFP

�½ f �.

Of course, similar to the case of P¼ 1, we can get a more accurate approximate

solution by solving the problem min
f̂2bFGeF �̂½f̂�. However, if P is a large number, the process

of construction of functions ’lnðrÞ and ’
u
nðrÞ is very complicated.

5.2.2. Step 2: Search the number of inflection points and their positions

It is well-known that the enumeration method is typically used when the problem size is
limited, or when the simplicity of implementation is more important than speed.
Therefore, it is an inefficient method for our case because its cost is proportional to the
number of candidate solutions, which tends to grow very quickly as the size of the problem
increases. Here, in order to answer our question, we use the language of computability
theory [17]. In fact, if we are given the largest number of inflection points P, we can prove
that our problem belongs to class P. However, it is not difficult to prove that if we do not
know the largest number of P, our problem already belongs to class NP-completeness.
Thus, we know that for our problem there is no effective algorithm, because up to now for
NP-complete problems no polynomial-time algorithms are known for solving them [18].

In this article, we develop a new algorithm, which is based on the enumeration method
and with using some a priori information. Above all, we assume that the number of
inflection points does not exceed more than a given constant P. We define this constant by
P¼bq1 � Nc, where q1 is the proportion of all grid points and b � c is the floor function. For
numerical experiments, we choose q1¼ 10%. Moreover, to suppose that the distance
between two inflection points is not less than a given constant K, i.e. jkpþ1� kpj5K for
p ¼ 1,P� 1. This constant depends on the total distance of domain of definition of our
solution and the number of inflection points. For example, we can define: K¼bq2bN/pcc,
where p4P is the number of inflection points and q2 is the proportion of the average grid
points bN/pc. For numerical experiments, we choose p¼ 50% and p¼P. In the end of this
section, we give a subalgorithm for locating the position of two inflection points:

(1) Locate the first inflection point for k1 ¼ 2,N� 1� K;
(2) Locate the second inflection point for k2 ¼ k1 þ K,N� 1;
(3) For every pair of inflection points (k1, k2), get solution and calculate their

generalized discrepancy;
(4) Compare the value of generalized discrepancy and obtain the optimal solution.

6. Numerical experiments

6.1. Synthetic simulation

To verify the feasibility of our method, we test it by computer simulations. The simulation
consists of two steps. First, a simulated extinction signal (input signal) is generated by
computer according to Equation (2) for a given particle number size distribution nexact(r)
(input distribution) and for a given complex refractive index �. Then, the input signal is
processed through our algorithm, and the retrieved distribution is compared with
input one.

Inverse Problems in Science and Engineering 11
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In our example, the size distribution function nexact(r) is given by n(r)¼ 4.0887� r�3.5 �
(sin(3� 10�12� r)þ 1). If we set h(r)¼ r�3.5 and obtain the slowly varying function:
f(r)¼ 4.0887� (sin(3� 10�12� r)þ 1). In addition, the complex refractive index � is
assumed to be 1.45�0.00i. The number of discretization nodes is (N, M)¼ (50, 4). For
numerical experiments, we set the error of the scattering operator of aerosol
hmn¼ %�maxm,namn and the error of the right-hand side ~�m ¼ %�maxm �̂m, where % is
mainly the standard normal random noise N(0, 1). The initial approximate solution
f 0(r)¼ 0. By our method we can obtain the approximate solution (the right side of
Figure 3) and the regularization parameter (the number of inflection points and their
position): 
¼ (P, k)¼ (1, 24). To compare with our method, we use the least square
method (LSM) on the bounded set (left side of Figure 3), variational regularization
methods with different a posteriori parameter choices (generalized principle of smoothing
functional (GPSF) [12], pseudo-optimal choice of parameter (POCP) [19] and generalized
discrepancy principle (GDP)) and total variation (TV) with the seminorm

R
Rjrf jdr

(parameter is chosen by GDP) (Figure 4). The relative errors for every method are showed
in Table 1. The results show that the slowly varying functions of Gaussian type are well
reconstructed. Our computer simulation indicates that our method does not affect too
much by variation of the complex refractive index and noise. Therefore, our method is
stable for retrieving aerosol particle size distribution functions.

Moreover, by our method, we can get the upper and lower solutions f u(r), f l(r)
(Figure 5). If the slowly varying function f(r) uses time h(r), we can obtain the number of
particle size distribution function nexact(r). In order to watch the results properly, we use
the log–log scale (Figure 6).

Now we give anther example. The size distribution function nexact(r) is given by
n(r)¼ 4.0887� r�3.5� (sin(4.6� 10�12 � r)þ 1). Similarly, we can obtain the approximate
solution (the right side of Figure 7) and the regularization parameter:

 ¼ ðP, ~kÞ ¼ ð2, ð13, 24ÞÞ. The relative errors for different methods are showed in
Table 2. The number of particle size distribution function nexact(r) is represented in
Figure 8 in log–log scale.

r

f r f r

r

Figure 3. The relation between the slowly varying function f(r) (unit of measurement: m�2mm�1) and
the particle radius r (unit of measurement: mm). Exact solution (—); Estimator solution (�
�). The
left graph: least square method. The right graph: inflection point method.

12 Y.F. Wang et al.
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6.2. Work with experimental data

In this subsection, we choose the ground measured data by the sun-photometer CE 318 to

test the feasibility of our method. We have performed successive in situ experiments using

r

f r

Figure 4. The relation between the slowly varying function f(r) (m�2mm�1) and the particle radius r
(mm) for variational regularization methods with different methods of selecting regularization
parameters �. Here: — exact solution; �.� GPSF; �?� TV; �i� GDP; �
� POCP.

Table 1. Relative error for different methods.

Methods LSM GPSF TV GDP POCP Inflection point method

Relative error 0.004017 0.056801 0.118180 0.046644 0.056800 0.046367

r

f r

Figure 5. The lower (�i�) and upper (�*�) solutions for the slowly varying function f(r). Here
the exact solution denotes by the full line (—).
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CE 318 from October 17 to October 31 in the year 2005. A complex refractive index value
of �¼ 1.500� 0.095i was used to perform the inversion [5]. By our method, the retrieval
results of the number of size distribution function n(r) are plotted in Figure 9 for the
chosen data in the afternoon.

r r

f r f r

Figure 7. Retrieval of slowly varying function f(r) in the case of P¼ 2. The left graph: LSM. The
right graph: inflection point method.

log r log r

log n r log n r

Figure 6. The relation between the atmospheric aerosol particle size distribution function n(r) and
the particle radius r in log-log scale, i.e. the relation between log (n) and log (r). The left graph: GDP.
The right graph: inflection point method.

Table 2. Relative error for different methods in two-dimensional case.

Methods LSM GPSF TV GDP POCP Inflection point method

Relative error 0.006417 0.054612 0.161280 0.125070 0.054612 0.013493

14 Y.F. Wang et al.
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7. Conclusion

The results showed that the inflection points method is an efficient and feasible algorithm

for solving this kind of ill-posed problem (recovering aerosol particle size distribution
function). To compare with standard smooth regularization methods, the inflection points
method yields more accurate retrieval results for recovering the aerosol particle size

distribution function in our problem; and in the same accuracy, the inflection points
method maintains the global shape.

log r log r

log n rlog n r

Figure 8. Retrieval of atmospheric aerosol particle size distribution function n(r) in the log–log scale
for P¼ 2. The left graph: GDP. The right graph: inflection point method.

Figure 9. Particle size distribution in October (PM), 2005.
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