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Restoration of seismic data as an ill-posed inverse problem means to recover the
complete wavefields from sub-sampled data. Since seismic data are typically
sparse in the curvelet domain, this problem can be solved based on the
compressive sensing theory. Meanwhile three major problems are modelling,
sampling and solving methods. We first construct l0 and l1 minimization models
and then develop fast projected gradient methods to solve the restoration
problem. For seismic data interpolation/restoration, the regular sub-sampled data
will generate coherence aliasing in the frequency domain, while the random sub-
sampling cannot control the largest sampling gap. Therefore, we consider a new
sampling technique in this article which is based on the controlled piecewise
random sub-sampling scheme. Numerical simulations are made and compared
with the iterative soft thresholding method and the spectral gradient-projection
method. It reveals that the proposed algorithms have the advantages of high
precision, robustness and fast calculation.
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1. Introduction

In exploration seismology, the process of acquisition records the continuous wave field
which is generated by the source. In order to restore the seismic data correctly, the
acquisition should satisfy the Nyquist/Shannon sampling theorem, i.e. the sampling
frequency should at least be twice the maximum frequency of original signal. In seismic
acquisition, because of the influence of obstacles at land surface, rivers, bad receivers,
noise, acquisition aperture, restriction of topography and investment, the obtained data
usually does not satisfy the sampling theorem. A direct effect of the limitations of
acquisition is that the sub-sampled data will generate aliasing in the frequency domain;
therefore, it may affect the subsequent processing such as filtering, de-noising, AVO
(amplitude versus offset) analysis, multiple eliminating and migration imaging. In order to
remove the influence of sub-sampled data, the seismic data restoration/interpolation
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technique is often used. On the other hand, seismic data interpolation can gener-

ate high-resolution data which will save the cost and improve the imaging results. In

summary, seismic data restoration is an important research direction in exploration

seismology [1,2].
Many seismic data restoration methods have been developed in the past few years.

Mostafa and Sacchi [3], classify the methods for seismic wavefield recovery into two kinds:

wave-equation-based methods and signal processing methods. According to our knowl-

edge these methods can be classified into four classes. The first class is the prediction error

filter methods. Seismic data can be obtained by finding a convolution filter that predicts

the data in such a way that the error is white noise. The well-known f–x predictive method

in [4,5] can restore the spatially aliased regularly sub-sampled data. The low-frequency

data components are utilized to recover the high-frequency data. A modified projective

prediction error filter method was proposed in [6]. However, these methods are applicable

only if the original data is regularly sampled in space and will cost a lot in computation.

Similar methods in the f–k domain [7] for band-limited signals use the Fourier transform

to predict the complete wave field. The interpolation method that rely on the t–x domain

predictive filters were introduced in [8–10], which first estimate the dip in a sliding time

window and then interpolate along the dip direction in each time window. All the above-

mentioned methods are based on the assumption of linear events; the restoration will

deteriorate for cross events. The second kind of method is based on the wave equation.

These methods utilize the physical properties of wave propagation to restore seismic data.

An integral with a continuous operator is often used to obtain the complete wave field

[11,12]. Some information of velocity distribution in the interior of earth is needed for

these methods. The third class is the mathematical interpolation in the time domain. These

methods include sinc interpolation after alias reduction via NMO (normal movement)

correction [13], most coherent dip interpolation [14], interpolation using event attributes

and power diversity slant–stack interpolation. The sinc interpolation methods are not

appropriate for far offset data, while the most coherent dip interpolation is only suitable

for data consisting of linear events. The last kind of method is based on the Fourier

analysis. Some a priori knowledge such as the seismic signals being band-limited or

sparseness of seismic data is needed. The seismic data are decomposed through a

transform. These methods are robust for noisy data. Methods based on Fourier transform

[15–19] can be applied to seismic signals with spatially band-limited property. The methods

based on linear Radon transform [20] and parabolic Radon transform [21] can focus the

energy of signals in the transformed domain. The curvelet transform was introduced in

seismic restoration in [22,23], and was proved to be the most sparse one for seismic data.
The model of seismic acquisition can be written as

Ax ¼ b, ð1Þ

where A2R
l�m is the sampling operator, x2R

m is the reflectivity model, and b2R
l

denotes the sampled data. The restoration problem is to solve x from A and b, thus it is an

inverse problem. A problem is called well-posed if the solution of (1) exists, is unique and

continuous. If any one of these conditions is violated, the problem is ill-posed.

Equation (1) can be solved by finding a least squares solution, i.e. solving the problem

min
1

2
kAx� bk22, ð2Þ
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where k � k2 is the Euclidean norm of a vector. It is equivalent to solving the normal

equation

ATAx ¼ ATb, ð3Þ

where AT is the transpose of A. However, the direct inversion of (3) produces an unstable

solution. In order to obtain a stable solution, regularization is necessary.
A popular method for solving ill-posed problems is the Tikhonov regularization, which

refers to solving a regularized functional

min J�ðxÞ ¼
1

2
kAx� bk22 þ

�

2
�ðxÞ, ð4Þ

where �(�) is the so-called Tikhonov stabilizer and �4 0 is the regularization parameter.

We often choose �ðxÞ ¼ kD1=2xk22, where D is a positive semi-definite and bounded

operator. Then, the minimizer of J�(x) is given by

x� ¼ ðA
TAþ �DÞ�1ATb: ð5Þ

For solving Equation (5), several methods such as LU decomposition, singular value

decomposition and QR decomposition can be used [24]. However, any direct method

should be avoided and iterative solvers are preferred for geophysical inversion problems.

The commonly used iterative methods involve conjugate gradient-type methods, Newton-

type methods and statistical methods based on Bayesian inference [24]. However, these

methods may be time consuming and other methods which possess fast convergence and

stability are desirable for large-scale seismic data restoration problems.
For seismic interpolation problem, let us denote by x the original seismic wave field, b

the sampled data and A the sampling operator, the expression again can be written as (1).

Our purpose is to restore x from the sampled data b. Since b is usually incomplete, A is an

under-determined operator. This indicates that there are infinite solutions satisfying the

seismic interpolation Equation (1). Hence, seismic data interpolation is an ill-posed inverse

problem.
The compressive sensing in information theory could be used to recover the original

data from insufficient sampling, which breaks the limitations of the Nyquist/Shannon

sampling theorem. This theory has been applied in many application fields. Theoretically,

if the seismic data is sparse under a transform, then we can restore the complete data from

sub-sampled data according to the compressive sensing. Another potential application of

the compressive sensing theory in seismology is the design of new sampling methods in

seismic acquisition. As we all know, seismic acquisition expends a lot of time and money.

The number of sources and receivers can be reduced greatly based on compressive sensing,

which will save the acquisition cost. At the same time, the complete wave field can still be

recovered from partial sampled data.
Finding the sparse solution of an under-determined system is also a crucial issue in

seismic processing. Due to huge storage of the data volume and the specific sampling,

methods for solving general problems cannot be used in seismic data restoration directly.

So far, developed methods include the iterative soft thresholding method [25,26], the

spectral projection-gradient method [27] and the iterative re-weighted least squares method

[28]. However, these methods do not converge very fast which may lead to deficient usage.
It is well-known that the best model for finding a sparse solution of an under-

determined system is the solution in lq space with q! 0. Therefore, to meet the above
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requirements of applying compressive sensing to seismology, we consider the smoothing l0
method and develop two fast and robust algorithms for solving the sparse restoration
problem. As far as we know, the methods we consider have not been addressed in the
literature for restoration of seismic wavefields.

The outline of this article is as follows. We give a short review of the concept of
compressive sensing in Section 2.

In Section 3, we introduce the sparse transform. In particular, the popular curvelet
transform is introduced. As a multi-scale, multidirectional, anisotropic and local
transform, it has great advantages over the Fourier transform, Radon transform and
the wavelet transform for seismic data processing. Therefore, it can be used in seismic data
recovery.

Our recently developed sampling scheme [2] for seismic restoration is introduced in
Section 4. Random sub-sampling cannot control the largest sampling gap which is
unfavourable for curvelet-based wave field restoration [25], and the regularly sub-sampled
data will generate aliasing in the frequency domain. Our sampling technique can both
control the sampling gap and reduce the aliasing in the frequency domain. It is worthwhile
to mention that a lot of sampling methods were proposed in different applications, but
they cannot be introduced directly to solve seismic restoration because of the specialty of
seismic acquisition.

In Section 5, we first give a brief review of the classical methods, and then we devote
ourselves to build the lq model with q¼ 0 and q¼ 1 and develop two fast and robust
methods for solving the sparse restoration problem.

Numerical simulations are given in Section 6. In Section 6.1, we show that our
controlled sampling method can greatly improve the restoration; its performance is
comparable with the jittered sampling [22]. In Sections 6.2 and 6.3, we show that our
proposed methods based on lq model with q¼ 0 and q¼ 1 along with our sampling
technique are fast and robust in sparse restoration of seismic wavefield. In Section 6.4, a
field data example is presented. The performance of different methods for the practical
data are compared. Some remarks on classical matching pursuit and orthogonal matching
pursuit methods are addressed in Section 6.5. Finally in Section 7, we discuss the potential
usage of the compressive sensing and other interesting study fields.

2. The basics of compressive sensing

The Nyquist/Shannon sampling theorem as the foundation of digital signal and image
processing is widely used in many areas. But it takes a lot of time in computation and
storage since the amount of sampled data is huge. Because of the restriction of sampling
time and sampling numbers in applications, the sampled data usually disobey this
theorem. Therefore, it is necessary to find new sampling methods to break the restriction.

If the sampling process is linear, then it can be written as

b ¼ �f, ð6Þ

where f2R
N is the original signal, b2R

M is the sampled data and �2R
M�N is the

sampling matrix. If the sampled data is incomplete, i.e.M5N, then Equation (6) is under-
determined. This indicates that inversion of (6) is ill-posed.

The recently posed compressive sensing theory can restore the original data from the
sub-sampled data. However, this theory is based on two basic conditions. First, the
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original signal f must be sparse under some transform, i.e. f can be expressed as f¼�s,
where s has a few non-zero entries. The Fourier transform is commonly used in signal
processing, and signals are usually decomposed in the frequency domain. The discrete
cosine transform and wavelet transform are two famous transforms for signal/image
processing. The wavelet transform can also be used to restore a medical image using
magnetic resonance imaging (MRI) [29]. For seismic data processing, the commonly used
transforms include the Fourier transform [17,18], the linear Radon transform [20], the
parabolic Radon transform [21] and the Gabor transform. If there exists a transform �
such that s¼�Tf is sparse, then Equation (6) can be changed into

b ¼ As, ð7Þ

where A¼��. Another condition for compressive sensing is that A must satisfy the
restricted isometry property (RIP) [30,31]. If � is the Gaussian random matrix, the partial
Fourier matrix, the uniform spherical matrix, the binary random matrix, the partial
Hadamard matrix or the Toeplitz matrix, then A satisfies the RIP. If K5C �M/log(N/M ),
the sparse solution can be solved, where C is a universal constant and K the number of
non-zero elements of s [31].

If the above two conditions are satisfied, we can find s by solving Equation (7), which is
actually an optimization problem

min ksk0, s:t: As ¼ b, ð8Þ

where k�k0 denotes the number of non-zero entries. As a combinatorial optimization, solving
this problem essentially requires exhaustive searches over all subsets of columns ofA [30,32].

3. Sparse transforms

3.1. Transform classification

Sparse transform is an important part of compressive sensing. If the coefficients in the
transform domain are very sparse, then only small sampling numbers are enough. In the
seismic processing, the most commonly used transforms are the Fourier transform,
the linear Radon transform, the parabolic Radon transform and the curvelet transform.
The linear Radon transform can focus the energy of linear events; the parabolic Radon
transform can compress events with parabolic shapes. Although applications of wavelets
have become increasingly popular in scientific and engineering fields, traditional wavelets
perform well only at those points which possess singularities, and the geometric properties,
e.g. waveforms of wave fronts in seismic data are not utilized. The ridgelet transform can
deal with the linear events, but fail with curve events. Curvelet transform as a multi-scale
ridgelet transform, and is multi-scale, multi-directional, anisotropic and local [33]. Curves
are approximated by piecewise line segments in the curvelet domain; therefore, seismic
signals can sparsely be compressed.

3.2. The curvelet transform

Similar to the wavelet and ridgelet transforms, curvelet transform can be represented by
inner product of the curvelet functions ’ and the signal f(x)

cð j, l, kÞ ¼ h f, ’j,l,ki ¼

Z
R2

f ðxÞ’j,l,kðxÞdx, ð9Þ
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where f2L2(R2), ’j,l,k denotes curvelet function and �’ is the conjugate of ’, which is

indexed by three parameters: a scale parameter 2�j, j2N0 (N0 is the positive integer set),

a sequence of rotation angles �j,l¼ 2�l � 2�b j/2c, 0� l� 2�b j/2c � 1 and a position x
ð j,l Þ
k ¼

R�1�j,l ðk12
�j, k22

�bj=2cÞ
T, ðk1, k2Þ 2 Z

2 (Z denotes the integer set), where

R�j,l ¼
cos �j,l sin �j,l

� sin �j,l cos �j,l

� �

is the rotation matrix with angle �j,l. Curvelets consist of directional entries ’j,l,k(x) in fine

scales and isotropic entries ’j0,kðxÞ in coarse scales. In fine scales, the curvelet function can

be written as

’j,l,kðxÞ ¼ ’j R�j,lðx� x
ð j,l Þ
k Þ

� �
, ð10Þ

while in coarse scales, the curvelet function can be denoted as ’j0,kðxÞ ¼ ’j0 ðx� 2�j0kÞ,

which indicates that the curvelets are isotropic in the coarse scale. The function ’j(x) is the
waveform by means of its Fourier transform ’̂jð!Þ, which serves as a ‘mother’ curvelet in

the sense that all curvelets at scale 2�j are obtained by rotations and translations of ’j.
Numerical implementations of curvelet transform can be outlined in three steps: applying

2D FFT, product with frequency windows and applying 2D inverse FFT for each window.

Through the curvelet transform, the original signals are decomposed into various scales

and angles. Its discrete form can be written as c¼Sf, where c is a vector denoting the

discrete set of curvelet coefficients, f is the discrete form of the data and S¼WFF2 is the

curvelet transform matrix, where F2 is the 2D Fourier transform matrix and WF denotes

the windowing operator followed by 2D inverse Fourier transform in each scale and in

each direction. The computational cost of the forward and inverse curvelet transform is

O(N2 logN ) for an N�N data. We refer to [34,35] for details of the implementation of the

curvelet transform by involving FFT and IFFT. The inverse curvelet transform can be

written as f¼S*c, where S* denotes the adjoint operator of S. Since seismic data are

sparse under the curvelet transform, we use it as the sparse transform in this article.

4. Sampling

The sampling technique is important for compressive sensing. It is closely related to the

quality of restoration, e.g. correct sampling in MRI and radar imaging [29] can improve

the quality of restoration. In seismology, because the receivers can only receive the signals

on the ground, traditional sampling methods cannot be employed in seismic exploration

directly. There are mainly two sub-sampling methods: the regular sub-sampling and the

random sub-sampling. In the former, the receivers are located at equal distance, but they

may not satisfy the Nyquist/Shannon theorem. A direct consequence of the regular sub-

sampling is the coherent aliasing which is not straightforward for transform-based

restoration and is difficult to remove. In the random sub-sampling, the receivers are placed

randomly on the survey line. The aliasing caused by random sub-sampling in the frequency

domain can be seen as random noise, thus the restoration problem can be treated as a

de-noising problem [25]. If the gap size of random sampling is large, the recovered data

will lose some information. Therefore, a sampling method which can control the gap size

and preserve the randomness is necessary for seismic restoration.
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The jittered sub-sampling proposed in [22] can both control the gap size and preserve

the randomness, so it is better than the random sampling. However, this method is not

flexible. In view of these sampling methods, a piecewise random sampling method,

developed by us recentley, will be utilized. This sampling technique can both control the

gap size and keep the randomness and is flexible. For the random sampling, the

probability of been sampled is the same for each position. If the Nyquist sampling number

is N, and the actual chosen number is K, then the largest gap may be N�K. If the gap size

is larger than the scale of the curvelet, then some information cannot be restored. Instead,

if the N positions are first divided into M pieces, the length of each piece is N/M, and

random sampling with the ratio of K/N is in each piece, then the largest gap size is

2(N/M )(1�K/N ), therefore, the gap size is controlled. And at the same time, the

randomness is also retained.
The piecewise sampling method can be described as follows: (i) divide the N positions

into M pieces, where the length of each piece N/M should be less than a scale of the

curvelet; (ii) randomly choose K/M positions at each piece, thus the total sampling number

is K. If the number of pieces being divided is large enough, then the gap size is small. Thus,

it will improve the quality of restoration.
It deserves attention that in a recent work, Naghizadeh and Saachi [23] succeed in

reconstructing regularly decimated aliased seismic data based on choosing a special mask

function. This method relies on choosing a user-defined threshold or a nearest neighbour

operator. Although additional effort is added, it is a promising sampling method.

5. Methods of solution

5.1. Classical methods

Finding the sparse solution of under-determined problems has been studied in many areas,

meanwhile the commonly used methods are based on the l1 norm optimization. These

methods find the sparse solution by solving

min ksk1, s:t: As ¼ y, ð11Þ

where k � k1 denotes the l1 norm. This problem can be changed into linear programming,

and then solved by interior point methods [1,36–38]. Suppose that the sampling process

has additive noise n, we obtain b¼Asþ n; therefore, the corresponding problem becomes

min ksk1, s:t: kAs� yk2 5 �, ð12Þ

where � is a nonnegative real parameter which controls the noise level in the data. This

problem can be solved as a second-order cone program. Problems (11) and (12) are closely

related to the following two problems:

min kAs� yk22 þ �ksk1 ð13Þ

and

min kAs� yk22, s:t: ksk1 5 �, ð14Þ

where � is the Lagrange multiplier. With appropriate parameter choices of �, � and �, the
solutions of (12), (13) and (14) coincide, and these problems are in some sense equivalent.
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A lot of methods can be used to solve problems (11)–(14). The homotopy method was
originally designed for solving noisy over-determined l1-penalized least squares problems
[39]. It was also used to solve under-determined problems in [40]. This method for the
model problems (11)–(14) has been considered in [41,42]. The least angle regression
method as a modification of the homotopy method, considered in [43], was investigated
solving problem (14). When the solution is sufficiently sparse, these two methods are more
rapid than general-purpose linear programming methods even for the high-dimensional
cases. If the solution is not rigorously sparse, the homotopy method may fail to find the
correct solution in certain scenarios.

Another popularly used method is the interior point method. In [1], an interior point
method based on equality and inequality constraints are addressed. In [38], problems (11)
and (13) are solved by first reformulating them as ‘perturbed linear programs’, then applying
a standard primal-dual interior point method. The linear equations are solved by iterative
methods such as LSQR or conjugate gradient method (CGM). Another interior point
method given in [44] is based on changing (13) into a quadratic programming (QP) problem
solved by preconditioned CGM. Problem (12) can also be solved by reconsidering it as a
second-order cone programming and then applying a log-barrier method, e.g. methods
developed in [36,45] are used to solve the land surface parameter retrieval problems.

Iterative soft thresholding methods were used to solve problem (13) [46]. But they are
sensitive to the initial values and are not always stable. In addition, many iterations are
required for convergence.

Recently, the spectral gradient-projection method was developed for solving problem
(12) [27]. The method relies on root-finding of the parameter � by solving the non-linear
convex, monotone equation kAs(�)� yk2¼ �. This method can handle both noisy and
noiseless cases. However, it is clear that the root-finding method is the famous
‘discrepancy principle’ in regularization theory for ill-posed problems [47].

Matching pursuit (MP) and orthogonal matching pursuit (OMP) [48–50] are also used
for sparse inversion. This is known as a kind of greedy approach. The vector b is
approximated as a linear combination of a few columns of A, where the active set of
columns to be used is built in a greedy fashion. At each iteration, a new column is added to
the active set. OMP includes an extra orthogonal step which is known to perform better
than the standard MP. The computational cost is small if the solution is very sparse.
However, only small dimensional problems are suitable for these methods. If Ax¼ b, with
x being sparse and the columns of A being sufficiently incoherent, then OMP finds the
sparsest solution. It is also robust for small levels of noise [49].

The projected gradient method developed in [51] express (13) as a nonnegative con-
straint quadratic programming by separating s as s¼ (s)þ� (�s)þ, where (s)þ¼max{s, 0}.
However, this method can only tackle real numbers, thus it is unsuitable for curvelet-based
seismic data restoration. The iterative re-weighted least squares method developed in [52]
changes the weights of entries of s at each iteration. A similar method was proposed in [53].

Methods based on non-convex objects are studied in [54,55]. In [54], the l0 norm is
replaced by a non-convex function. However, initial values must be carefully chosen to
prevent the local optimal solution. Other methods such as iterative support detection
method [56] and fix point method are also developed.

As an inverse problem with a priori knowledge the above problems fall into the general
lp� lq model [57]:

min kAs� bkpp þ �ksk
q
q, p, q � 0: ð15Þ
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Regularizing active set (projection) method can be applied.
These methods have extensive applications in various fields, such as image recon-

struction, MRI [29], seismic images [22], model selection in regression [43] and texture/
geometry separation.

5.2. Two fast methods for seismic restoration

Usually, the seismic restoration is a large-scale problem, thus fast solving methods are
crucial for seismic processing. Because of the large dimension of seismic data, traditional
methods such as interior methods [38], homotopy methods [40] and least angle regression
methods [43] cannot be used to large-scale seismic restoration. The iterative soft
thresholding (IST) method was introduced to recover the seismic data in [22]. A robust
spectral gradient-projection (SPGL1) method was proposed in [27] to solve problem (14).
In [58], the iterative re-weighted least squares was used for interpolation. Unfortunately,
these methods have slow convergence rate for large-scale problems [59], therefore, it is
urgent to find fast convergent methods.

We develop two fast methods for seismic restoration in this section. They are very fast
compared with the above three methods. The CPU time takes only about 1/3 of the
SPGL1 method, and about 1/4 of the IST method. Numerical experiments in Section 6
verify the quick convergence of the developed methods.

5.2.1. A smooth l0 method

The original problem for l0 minimization is the following equality constrained optimiza-
tion problem:

min kxk0, s:t: Ax ¼ b: ð16Þ

However, direct solution of (16) is hard to obtain because it is time consuming. Obviously,
solving the true l0 norm optimization is superior to the l1 norm optimization though both
methods can yield sparse solutions. We consider approximation of l0 minimization
problem. Denote f�(t)¼ 1� exp(�t2/(2�2)) as a function of � and t. This function satisfies
the following properties: (a) f�(t) is continuous and differentiable; (b) f�(t) tends to the l0
norm when � tends to 0, i.e.

lim
�!0

f�ðtÞ ¼
0, t ¼ 0,

1, t 6¼ 0.

�
ð17Þ

Thus, we can construct a continuous function to approximate the l0 quasi-norm, and then
obtain the optimal solution. In this way, problem (16) is approximated by

min J�ðxÞ :¼
XN
i¼1

f�ðxiÞ, s:t: Ax ¼ b: ð18Þ

The object function J�(x) is differentiable and is closely related to the parameter �: the
smaller the value of �, the closer the behaviour of J�(x) to the l0 quasi-norm. For small
values of �, J�(x) is highly non-smooth and contains a lot of local minima, hence its
minimization is not easy. On the other hand, for larger values of �, J�(x) is smoother and
contains fewer local minima, and its minimization is easier. Practically, we use a decreasing
sequence values of �: for minimizing J�(x) for each value of �, the initial value of the
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minimization algorithm is the minimum of J�(x) from the previous value of �. Then we

apply a simple projected gradient method to solve Equation (18). Details of the procedure

are given in Algorithm 1. For the convergence of a similar method for general signal

processing problems, we refer to [54] for details. Below we present a similar algorithm to

[54] based on the above l0 norm approximation and use it for seismic wavefield restoration.

Algorithm 1 (Smooth l0 method)

(1) Initialization:

(1) Let x̂0 be the minimum l2-norm solution of Ax¼ b, which can be obtained by

applying the pseudo-inverse of A.
(2) Choose the inner loop number L, outer loop number J and the step-length 	;

set a decreasing sequence values of � : [�1, . . . , �J].

(2) Iteration: for j¼ 1, . . . , J

(1) Let �¼ �j.
(2) Minimize the function J�(x) on the feasible set S¼ {xjAx¼ b} using L

iterations of gradient descent method.

A Let x ¼ x̂j�1;
B For l¼ 1, . . . ,L:

(a) Let g�¼ [rJ�(x1),rJ�(x2), . . . ,rJ�(xn)].

(b) (The gradient decent iteration): x¼ xþ 	d (	 is the step-length, d¼ 
(g�)).
(c) (Projection): Project x on the feasible set S ¼ {xjAx¼ b}:

x ¼ x� ATðAATÞ
�1
ðAx� bÞ:

(3) Set x̂j ¼ x, �¼ �/2.

(3) Final solution is x̂ ¼ x̂J.

We can also choose other functions to approximate the l0 quasi-norm, e.g. the

‘truncated hyperbolic’ function:

f�ðtÞ ¼
0, jtj � �,

1� ðt=�Þ2, jtj � �

�
ð19Þ

and

f�ðtÞ ¼ 1� �2=ðt2 þ �2Þ: ð20Þ

Remark 1 In Step 2 of Algorithm 1, if the gradient descent step is based on steepest

descent (SD) step, i.e. 
(g�)¼�g� and 	¼ 	SD, then the algorithm corresponds to

projected steepest descent method.

In addition, in Algorithm 1, the inner loop number L need not be too large, and

according to our experience, the step-length 	 should be greater than 2 to ensure fast

convergence. However, it is clear that this choice of the step-length is not optimal. Usually,

we need to calculate an optimal step-length 	* by line search for the one-dimensional

problem 	*¼ argmin	 J�(xþ 	d ). One may readily see that some fast gradient methods
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based on non-monotone gradient descent step can be applied, e.g. the Barzilai–Borwein
step used in seismic migration inversion [60], where the function 
(g�) is updated by the
former iterative information instead of the current iterative information.

For curvelet-based restoration, because of the orthogonality of the curvelet transform,
the inverse of AAT is the identify matrix, thus the projection onto S ¼ {xjAx¼ b} can be
simply solved by x¼ x�AT(Ax� b).

5.2.2. Approximations of the l1 norm optimization

As it is well-known that the objective function based on l1 norm is non-differentiable at the
original point, most of the solvers for l1 norm optimization are based on the interior point
methods to solve a linear programming problem. In this section, we consider using smooth
functions to approximate the l1 norm. We consider the function

f�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jtj2 þ �

q
, ð21Þ

which is continuous, convex and differentiable. If � is small enough, f�(t) will approximate
the l1 norm sufficiently, thus it can be used to replace the l1 norm [24]. Another similar
function is

f�ðtÞ ¼
jtj, jtj � 0:01,

1

�
½logð1þ expð��tÞÞ þ logð1þ expð�tÞÞ�, jtj5 0:01:

8<
: ð22Þ

If � is large enough, then f� will approximate the l1 norm. This function has been
used for solving non-linear and mixed complementarity problems and feature classifica-
tion [61,62].

Since the object function based on f�(t) or f�(t) is an approximation of the l1 norm, the
errors are inevitable. However, the cost of computation will be much less than the IST
method and SPGL1 method. At each iteration of the SPGL1 method, one needs to project
the iteration point to the active set specified by the l1 norm, which will increase the amount
of computation [27]; while the gradient projection for sparse reconstruction (GPSR)
method cannot deal with complex numbers [51]. We found that the smaller the values of �,
the better the approximation of f�(t) to the l1 norm; the smaller the values of �, the worse
the approximation of f�(t) to the l1 norm. Thus, we can solve the following problems to
get the sparse solution:

minF�ðxÞ ¼
XN
i¼1

f�ðxiÞ, s:t: Ax ¼ b ð23Þ

or

minF�ðxÞ ¼
XN
i¼1

f�ðxiÞ, s:t: Ax ¼ b: ð24Þ

We use a projected gradient algorithm to solve these two problems. Details are outlined
in Algorithm 2. In our algorithm, a projection to S ¼ {xjAx¼ b} is also needed. However,
the projection is easy to be computed. Since A is orthogonal, the initial l2 norm solution
can be obtained by x¼ATb, and the projection can be easily calculated through
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xkþ1 ¼ xkþ1pre � ATðAxkþ1pre � bÞ. However, it is different from the smooth l0 algorithm
because it does not need the outer iteration.

Algorithm 2 (Projected gradient method for approximation of the l1 norm optimization)

(1) Initialization:

(1) Choose the maximum loop number L, set �¼ 1.0e� 16 (or �¼ 1000), and
k¼ 0.

(2) Let x0 be the l2 norm solution of Ax¼ b, which can be obtained by the pseudo-
inverse of A.

(2) Iteration:

(1) Let g�¼rF�(x
k) (or g�¼rF�(x

k)).
(2) Perform the gradient decent iteration: xkþ1pre ¼ xk þ 	d (	 is the step length,

d¼ 
(g�) or d¼ 
(g�), x
kþ1
pre denotes the predicted step).

(3) Projection: Project xkþ1pre on the feasible set S ¼ {xjAx¼ b}:

xkþ1 ¼ xkþ1pre � ATðAATÞ
�1
ðAxkþ1pre � bÞ:

(4) Let xk¼ xkþ1, k¼ kþ 1.

(3) Final solution is x¼ xL.

In Step 2 of Algorithm 2, if the gradient descent step is based on steepest descent step,
i.e. 
(g�)¼�g� or 
(g�)¼�g� and 	¼ 	

SD, then the algorithm corresponds to projected
steepest descent method. More advanced choices of the function 
 and the step-length 	
are given in Remark 1.

6. Numerical examples

6.1. Piecewise sampling vs. random sampling

Considering a synthetic shot data of a layered earth model with six plane layers, modelled
with a 15m receiver interval, 2� 10�3 s sampling interval and a source function given by a
Ricker wavelet with a central-frequency of 15Hz. The dataset contains 256 traces of
seismic data with 256 time samples in each trace. The original shot gather and its frequency
spectrum are shown in Figure 1(a) and (b). The resulting shot gather after regular sub-
sampling and its corresponding frequency spectrum are shown in Figure 1(c) and (d). In
this simulation, the sampling number is 1/3 of the Nyquist sampling number. Serious
coherent aliasing can be seen in Figure 1(d). With the same number of regular sampling,
the random sampling and its frequency spectrum are shown in Figure 2(a) and (b). It
reveals that the aliasing in Figure 2(b) is just like random noise; the recovery results by
SPGL1 and the corresponding frequency spectrum are given in Figure 2(c) and (d). To
show the degree of restoring ability, we adopt the signal-to-noise ratio (SNR) defined by
SNR ¼ 10 � logð

kdataorigk
2

kdataorig�datarestk
2Þ. The SNR using the random sampling is about 7.1606,

where dataorig denotes the complete data and datarest denotes the recovered data. With the
same number of regular sampling, the jittered sampling and its frequency spectrum are
shown in Figure 3(a) and (b); the restoration and the restored frequency spectrum are
given in Figure 3(c) and (d). The SNR using the jittered sampling is 9.3008. We also
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perform our piecewise sampling simulations. The piecewise sampling and its frequency
spectrum can be seen in Figure 4(a) and (b); the restoration results and the restored
frequency are shown in Figure 4(c) and (d). The SNR of restoration using the piecewise
sampling is 9.8417. The numerical performance indicates that the piecewise sampling can
improve the restoration greatly.

6.2. Results of the smooth l0 method

We give examples to show the superiority of the smooth l0 method to the IST and SPGL1
methods. The synthetic data consists of 300 traces with spacing 15m. The temporal sample
interval is 2� 10�3 s and the sampling number is 300. The full data and the incomplete
acquisition are depicted in Figure 5(a) and (b), respectively, where the sampling number in
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Figure 1. (a) The original data and (b) its frequency; (c) the regular sub-sampling and (d) the
frequency of the sub-sampled data.
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Figure 5(b) is half of the Nyquist sampling number. The restoration results by the smooth

l0 method and the difference between the restoration and the original data are shown in

Figure 6, where we choose f�(t)¼ 1� exp(�t2/(2�2)). The restoration results by the smooth

l0 method using the approximate function f�(t)¼ 1� �2/(t2þ �2) and difference between

the restoration and the original data are given in Figure 7(b). Similar results of smooth l0
method using the approximate function

f�ðtÞ ¼
0, jtj � �,

1� ðt=�Þ2, jtj � �

�

are shown in Figure 8. The restoration results by the IST method and the difference

between the restoration and the original data are shown in Figure 9. While the results

using the SPGL1 method are shown in Figure 10. Table 1 summarizes details of the SNR,

Distance (km)

T
im

e 
(s

)
t−x domain

−2 −1 0 1 2

0
(a) (b)

(c) (d)

0.1

0.2

0.3

0.4

0.5

0.6

Wavenumber

Fr
eq

ue
nc

y 
(h

z)

f−k domain

−30 −20 −10 0 10 20 30

0

50

100

150

200

250

Distance (km)

T
im

e 
(s

)

t−x domain

−2 −1 0 1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

Wavenumber

Fr
eq

ue
nc

y 
(h

z)
f−k domain

−30 −20 −10 0 10 20 30

0

50

100

150

200

250

Figure 2. (a) The random sampling and (b) its frequency; (c) the restoration results and (d) the
frequency of the restored data.
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the relative error and the cost of computation of these methods. The results show that the
smooth l0 method is much faster than the IST and SPGL1 methods. It uses the CPU time
about 1/4 of the IST method, and about 1/3 of the SPGL1 method to yield the similar
results. Thus, we conclude that the smooth l0 method is suitable for seismic data
restoration.

6.3. Results of the l1 norm optimization using projected gradient methods

We use the same full data and sampled data as in Figure 5 and perform Algorithm 2. The
number of sampling is half of the Nyquist number. When the l1 norm is replaced by F�(x),
where �¼ 1.0e� 20, then after 30 iterations, the SNR of the restored results approaches
22.8120 and the CPU time is 229 s. The restoration results and the difference between the
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Figure 3. (a) The jittered sampling and (b) its frequency; (c) the restoration results and (d) the
frequency of the restored data.
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restoration and the original data are shown in Figure 11. When F�(x) is used to replace the
l1 norm, where �¼ 1000, then after 30 iterations, the SNR approaches 23.2334 and the
CPU time is 241 s. The restoration results and the difference between the restoration and
the original data are shown in Figure 12. It is evident that both the convergence rate is fast
and the solution is acceptable. Though the restoration has random noise, the key
information can still be restored; therefore, this method can be applied to seismic data
restoration. However, to better apply this method to seismic data processing, the next
major work is to remove the random noise. Some tricks may be used: (i) normalization of
the original data, which will lead to small coefficients in the curvelet domain; (ii) since
curvelet coefficients are focused on the first half of the vector, the latter half part of vector
can be truncated to boost the SNR.
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Figure 4. (a) The piecewise sampling and (b) its frequency; (c) the restoration results and (d) the
frequency of the restored data.
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6.4. Field data applications

We further examine the efficiency of the new methods with field data. A marine shot
gather is provided in Figure 13(a) which consists of 160 traces with spacing 25m and 800
time samples with interval 2� 10�3 s. There are damaged traces in the gather. The sub-
sampled gather is shown in Figure 13(b) with half of the original traces randomly deleted.
This sub-sampled gather was used to restore the original gather with different methods.
The restoration using the smooth l0 method with f�(t)¼ 1� exp(�t2/(2�2)) is displayed in
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Figure 6. (a) Restoration results by the smooth l0 method with f�(t)¼ 1� exp(�t2/(2�2)); (b) the
difference between (a) and the original data.
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Figure 5. (a) The original data; (b) the sampled data with randomly removed half of the receiver
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Figure 14(a), while the restoration with f�(t)¼ 1� �2/(t2þ �2) is given in Figure 14(b).
Meanwhile, the restoration results using the SPGL1 and IST methods are shown in
Figure 15. Comparison of the SNR, relative error and computational time of these
methods are shown in Table 2. These results show that the smooth l0 method with the
projected gradient algorithm is much faster than the IST and SPGL1 methods. The CPU
time is about 1/3 of the IST and SPGL1 methods. In addition the damaged trace in the
original gather was restored as a good trace. Thus, the new methods in this article are
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Figure 8. (a) Restoration results by smooth the l0 method with f�ðtÞ ¼
0, jtj � �;
1� ðt=�Þ2, jtj � �.

�
;

(b) the difference between (a) and the original data.
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efficient and can reduce the amount of computational cost greatly for seismic data
restoration.

6.5. Further remarks

It deserves pointing out that matching pursuit as a greedy algorithm has been widely used
in time-frequency analysis. Signals in the time domain can be changed into another
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Figure 9. (a) Restoration results by the IST method; (b) the difference between (a) and the
original data.
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Figure 10. (a) Restoration results by the SPGL1 method; (b) the difference between (a) and the
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domain under a suitable transform. These transforms are called a dictionary. Each

dictionary is a collection of waveforms. The commonly used transforms are usually over-

completed, i.e. the number of atoms is greater than the length of the signals. In discrete

case, this process can be written as

Ax ¼ b, ð25Þ

where A is a m� n transform matrix, m5 n. Each column of A is called an atom, b is a

signal in the time domain and x is the signal in the transformed domain. Since A is under-

determined there are infinite numbers of x satisfying (25).
The matching pursuit consists of two steps in each iteration: choose a new atom and

update the residual. Let ai, i¼ 1, . . . , n denote the i-th column of A. The initial residual is

r0¼ b, the initial solution is x¼ 0. At the k-th step, we choose the atom which has the

largest correlation with the residual rk�1

ak ¼ argmaxfaig1�i�n jhrk�1, aiij, ð26Þ

Offset (km)

T
im

e 
(s

)

The restored data (b)(a)

−2 −1 0 1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

Offset (km)

T
im

e 
(s

)

The difference of the original data and
the restored data

−2 −1 0 1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 11. (a) Restoration results using F�(x) to replace the l1 norm; (b) the difference between (a)
and the original data.

Table 1. Comparison of the smooth l0 method, IST method and the SPGL1 method.

Algorithm SNR Relative error Time (s)

Smooth l0 with f�(t)¼ 1� exp(�t2/(2�2)) 25.5282 0.0529 306

Smooth l0 with f�(t)¼ 1� �2/(t2þ �2) 25.6524 0.0522 318

Smooth l0 with f�ðtÞ ¼
0, jtj � �;
1� ðt=�Þ2, jtj � �.

�
23.6445 0.0657 323

IST 24.8597 0.0571 1326
SPGL1 25.1210 0.0555 1069
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which will give the new residual rk¼ rk�1�hrk�1, akiak. The algorithm of matching pursuit

is outlined in Algorithm 3.

Algorithm 3 (Matching pursuit algorithm)

(1) Initialization: set r¼ b, x¼ 0.
(2) Iteration:

. Choose: y¼ATr, k¼maxijyij.

. Update: c¼hr, aki, x[k]¼x[k]þ c, r¼ r� cak.
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Figure 12. (a) Restoration results using F�(x) to replace the l1 norm; (b) the difference between (a)
and the original data.
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Figure 13. (a) The original marine shot gather; (b) the sub-sampled gather.
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Figure 14. (a) Restoration results by the smooth l0 method with f�(t)¼ 1� exp(�t2/(2�2));
(b) restoration results by the smooth l0 method with f�(t)¼ 1� �2/(t2þ �2).
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Figure 15. (a) Restoration results by the SPGL1 method; (b) restoration results by the IST method.

Table 2. Comparison of the smooth l0 method, IST method and the SPGL1 method for field data.

Algorithm SNR Relative error Time (s)

Smooth l0 with f�(t)¼ 1� exp(�t2/(2�2)) 6.1309 0.4937 83.985168

Smooth l0 with f�(t)¼ 1� �2/(t2þ �2) 6.1546 0.4923 91.954318
IST 6.1015 0.4954 269.382163
SPGL1 6.1426 0.4930 255.340876
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(3) If the stopping criterion is satisfied, stop; otherwise, go to Step 2.

In Step 3, the stopping criterion is based on the norm of the residual rk. If the value of
krkk is less than a preassigned small positive number, the iterations are terminated. The
algorithm is very simple, but the convergence is slow and needs a lot of iterations. Because
the coefficient is not optimized an atom will still be chosen in the following iterations even
if it has been selected.

The orthogonal matching pursuit algorithm can overcome this drawback by projecting
x onto the subspace spanned by the selected atoms. Since the orthogonal process can
remove the energy of the selected atoms, the selected atoms will not be chosen anymore.
The atom selection method is the same as in matching pursuit. If x has k non-zero
elements, the iteration will need k steps, but the iteration number of matching pursuit is
usually larger than m.

For the synthetic example in Section 6.2, the scale of dataset is 300� 300. The number
of coefficients in the curvelet domain is 649,161. For the matching pursuit method, it takes
361 s for 50 iterations. The number of the curvelet coefficients whose absolute values are
larger than 0.01 is 92,901; and the number of the curvelet coefficients whose absolute
values are larger than 0.001 is 265,444. This indicates that there are many more non-zero
coefficients, which conflicts the sparsity assumption. Therefore, millions of seconds will be
spent to find the right solution. For the orthogonal matching pursuit method, AT

kAk will be
ill-conditioned after 12 iterations, so the solution will be unstable, where Ak denotes the
sub-matrix constituted by the selected atoms at the k-th iteration. It spends 1821 s for 30
iterations. Therefore, both methods are not quite efficient for curvelet-based restoration.

7. Conclusion

In this article we use the compressive sensing theory to solve the seismic interpolation and
data restoration problem. The curvelet transform is used as the sparse transform, and a
piecewise sampling was introduced to improve the quality of restoration. The piecewise
sampling method can control the sampling gap and keep the randomness. Numerical results
show that this sampling method is superior to the random sampling. In computation, we
introduce two fast methods to solve the l0 and l1 minimization models. The methods we
developed were proved to be much faster than the IST and SPGL1 methods.

We argue that the curvelet transform can be used for de-noising, multiple remove and
migration; sampling method and sparse transform have great effect on the restoration
while fast methods will improve the restoring efficiency which is quite important for
seismic restoration. The three parts are major issues in compressive sensing and deserve
further attention for seismic data processing.

Apart from the seismic data restoration, compressive sensing can also be used for high-
resolution deconvolution. The high-resolution deconvolution problem was introduced in
[63], which is also an under-determined problem, thus it can be solved based on the
compressive sensing theory. We believe that the compressive sensing theory will serve wide
applications in geophysics.
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