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Abstract. In this paper we consider the regularity of the trust region-cg algorithm,
when it is applied to nonlinear ill-posed iverse problems. The trust region algorithm can
be viewed as a regularization method, but it differs from the traditional regularization
method, because no penalty term is need. Thus, the determing of the so-called regular-
ization parameter in a standard regularization method is avoided. Theoretical analysis
of the trust region-cg method is presented, convergency and regularity of the trust region
algorithm are proved, and numerical tests are also given.
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1 Introduction

In scientific and engineering computing, we are often encountered with nonlinear inverse prob-
lems. An inverse problem consists of a direct problem and some unknown function(s) or param-
eters. Inverse problems are usually ill-posed in the sense of J. Hadmard, i.e., at leat one term
of the existence, uniqueness, stability of the solution is vilated. Particularly we are concerned
with the stability, since in many applications the solution does not depend continuously on the
unknown quantities and the problem is ill-posed. A typical ill-posed problems is to determine
these unknowns given measured, or condaminated data.

We can outline the nonlinear ill-posed problems into an abstract operator equations

F(z) =y, (1)

where F' : D(F) C X — Y is a nonlinear mapping, X and Y are both seperable Hilbert
spaces. We assume that F' is continuous and compact for fixed € D(F).
Problem (1) is typically ill-posed in the sense that a solution z+ does not depend continu-

ously on the obervation data y. Since in practice only approximate data with some error level
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llys —yll <0 (2)

are available, problem (1) has to be regularized (see e.g. [3, 7, 23]). Through out this paper we

assume that a solution ™ of (1) exists, i.e.
F(z")=y. 3)

Regularization methods are such kind of methods which replace the ill-posed problem with
a stabilized problem whose solution depends on a parameter, named as the regularization
parameter. The regularized problem is well-posed in the sense of J. Hadamard. For a complete
theoretical analysis of such kind of method, please see some well-written books [23, 3, 13, 7, 14,
17].

Certainly the most well-known and most widely used regularization method for nonlinear ill-
posed problems is the method of Tikhonov regularization. In which one solves the unconstrained

minimization problem
min Jo[z,y] = | F(x) - ysl|” + ab(a). (4)

a > 0 is the regularization parameter. 6(z) serves as the stabilizer, i.e., stablizes the minimiza-
tion process and provides a priori information about the solution.

Replacing F(x) by first order Taylor’s expansion, i.e., (4) turns into
min Ja[¢,y] := [lys — Fzk) — F'(zx)€|]* + ab(€). (5)

If an approximate solution & of (5) is computed, we can let zp11 = zg + -

Assume that z;, is some approximation of the solution =, then
F(a™) = Fag) = F'(z)(a™ —zp) + (=5 21), (6)
where r(z1; z;) is the Taylor remainder. Denoting (T = 2™ — x;, and solving for it leads to
Fl(ap)€" =y — F(zy) — r(z™;zp). (7)
The above relation can be rewritten as
Fl(zp)€" =ys — Flaw) +y —ys —r(z52). (8)
Thus, the linearized problem
F'(zg)€ = ys — F(zy) (9)
is an approximation to the original problem up to up to an error err = ys —y + r(z*; x;) with
llerr|] <0+ [lr(z™; 2. (10)

Clearly (5) is equivalent to applying Tikhonov regularization to problem (9).
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Assumption 1.1 Assume that after k iterations, £t = ot — x;, satisfies
lys — Flaw) - F' ()€ < wllgs — Flea)ll, 0<w < 1.
Apart from the above analysis, we need the following assumption:

Assumption 1.2 For a certain ball B C D(F) around the exact solution x* of (1), and some
1>d>0let

|1F(z) = F(2) — F'(2)(z — 2)|| < d||F(z) — F(2)]| (11)
forall z, T € B.

This assumption is helpful for analyzing the properties of the trust region algorithm which we
presented in this paper.

Recently, optimization methods are becoming popular for solving nonlinear ill-posed in-
verse problems, for example, Gauss-Newton method ([1, 12]), Broyden’s method ([11]), and
Levenberg-Marquardt method ([9]), which have been well developed in nonlinear programming.

Trust region method has been used in parameter identification problem and image restora-
tion problem (see [25, 26]) and seems promising. This paper will consider trust region method

for nonlinear ill-posed inverse problems.

2 A Trust Region-CG Algorithm
Considering the unconstrained optimization problem
. L _ 2
min Jfz, y5] = [|F(2) = sl (12)

We denote by g(z) the gradient of the functional J, Hess(z) the approximate Hessian of J,

ie.,
g(x) = F'(2)" (F(2) —ys), Hess(x) = F'(x)"F'(x).

At the k-th iteration, a trust region subproblem (TRS) for (12) is

min g+ %(Hessks,s) = i (6), (13)
st Il < A, (14)

where g, = g(zr), Hessy = Hess(zy) and A > 0 is the trust region bound. (13)—(14) is solved
exactly or inexactly to obtain a trial step &. The ratio

_ Aredy,
" Pred,

Tk (15)
is used to decide whether the trial step & is acceptable and to adjust the trust region bound.

Aredy, = Jzk,ys) — J[zk + &k, ys) (16)
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is called the actual reduction in the objective model, and

Predy, = 1(0) — ¢x (&) (17)

is the predicted reduction. We outline the general trust region algorithm for unconstrained

optimization as follows.

Algorithm 2.1 (Trust region algorithm for nonlinear ill-posed problem)

STEP 1 Given the initial guess value t1 € R™, A1 >0,0< 3 <1 <1<7,0<7<
<1, >0, k:=1;

STEP 2 If some stopping rule is satisfied then STOP; Else, solve (13)-(14) giving &x;

STEP 8 Compute ry;

I if 1 <70,
Tht1 = { z, + & otherwise; (18)

Choose Ay that satisfies

_ J [mslléll, aAr] if i <o,
Brrt = { [Ak, T1Ak] otherwise; (19)
STEP / Evaluate gy, and Hessy; k:=k+1; GOTO STEP 2.
The constant 7; (i = 0,---,4) can be chosen by users. Typical values are 19 = 0, 7, =

2, 7, = 13 = 0.25, 74 = 0.5. For other choices of those constants, please see [4], [5], [15], [19],
etc.. The parameter 7y is usually zero (see [4], [20]) or a small positive constant (see [2] and
[21]). The advantage of using zero 7y is that a trial step is accepted whenever the objective
function is reduced. Hence it would not throw away a “good point”, which is a desirable
property especially when the function evaluations are very expensive.

In STEP 2, the stopping rule is based on some kind of so-called discrepancy principle, i.e.,

once the inequality
| F(zr) — ysll < @5, with & >1

is satisfied, no further iteration is needed.

The following lemma is well known (for example, see [16] and [6]):

Lemma 2.2 A vector £ € R" is a solution of (13)-(14) if and only if there exists \* > 0 such
that

(Hess + A" I)E* = —gi, (20)
and that Hessy + A*I is positive semi-definite, ||£*|| < A and

A (A = IE7]) = 0. (21)
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It is shown by Powell [20] that trust region algorithms for (12) is convergent if the trust

region step satisfies
Pred(§) > cllgllmin{A, [|g]|/[[Hess||} (22)
and some other conditions on Hess are satisfied. It is easy to see that
$(0) ¥(s) = % gl min{ A, llg|l/[| Hess||}. (23)

Therefore it is quite common that in practice the trial step at each iteration of a trust region

— min
l€[I<Atespan{g}

method is computed by solving the TRS (13)-(14) inexactly. One way to compute an inexact
solution of (13)-(14) was the truncated conjugate gradient method proposed by Toint [24] and
Steihaug [22] and analyzed by Yuan [30].
The conjugate gradient method for (13) generates a sequence as follows:
G = &+ wd, (24)
dir = —glhy + Budi, (25)
where g = V(&) = Hessp & + gr with g, = g(zy) = F'(xy)" (F(21) — ys), Hessp =
Hess(zy) = F'(zi) F'(z) and
T
a=—g! difd Hessidy, B =g/ |/l |17, (26)
with the initial values & =0, dy = —gf’ = —g.

Toint [24] and Steihaug [22] were the first to use the conjugate gradient method to solve the
general trust region subproblem (13)-(14). Even without assuming the positive definiteness of
Hess, we can continue the conjugate gradient method provided that leHess d; is positive. If
the iterate & + o;d; computed is in the trust region ball, it can be accepted, and the conjugate
gradient iterates can be continued to the next iteration. Whenever d} Hessd; is not positive

or & + «ud; is outside the trust region, we can take the longest step along d; within the trust

region and terminate the calculations.
Algorithm 2.3 (Truncated conjugate gradient method for TRS)
STEP 1 Given & =0, 0 < 7 < 1, € (tolerance) > 0 and compute g% = Vy(&), set
=1, di = —g} = —gi;
STEP 2 If || Ay& — iixl| < 7llill, stop, output € = &;
Compute leHess dp: if leHessk d; <0 then goto step 4;
Calculate oy by (26).
STEP 3 If ||& + audy|| > Ay then goto step 4;
Set &1 by (24) and gfﬂ_1 = g;p + aiHessy dy;
Compute B by (26) and set di1 by (25);
I:=l+1, goto step 2.
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STEP 4 Compute of > 0 satisfying ||§ + o di]| = A;

Set £ =& + afd;, and stop.
Note that aj can be computed by choosing the positive root of the quadratic equation in a:
ldill*a® +2(&, di)a + [|&]]* — A = 0. (27)

Let £* be the inexact solution of (13)-(14) obtained by the above truncated CG method and
€ be the exact solution of (13)-(14). Recently Yuan [30] shows that

$(0) = 9 (6)

which can be written as the following theorem:

Theorem 2.4 For any A >0, g € R" and any positive definite matric Hess € R"*™, let § be
the global solution of the trust region subproblem (13)-(14), and let £* be the solution obtained
by the truncated CG method, then

»(3). (29)

DN | =

P(§") <

This theorem tells us that the reduction in the approximate model is at least half of the max-
imum reduction if we use the truncated conjugate gradient method for solving the subproblem
(13)-(14).

Applying Algorithm 2.3 to compute the trial step & in Step 2 of Algorithm 2.1, we obtain
a trust region-cg algorithm for nonlinear ill-posed inverse problems. The algorithm consists
of two stage iterations: the inner loop and the outer loop. The inner loop is the truncated
conjugate gradient method, the outer loop is the trust region method.

To avoid too many inner loop iterations in one out loop iteration, we terminate the inner
loop iteration if itermax cg steps have been taken, where itermax is a given positive number.
We also terminate the inner look iteration if a progress in function reduction in the cg step is

smaller than €. However, in our numerical tests, this termination rule was not activated.

3 Properties of Algorithm 2.3

In this section we give some properties of the truncated conjugate gradient method. The main
result is the monotonicity of the iterates.

First, we present an equivalent form of the conjugate gradient method. Denote
Ap = F'(zp), up =y — F(xp) —r(zT521), @ = ys — F(xp),
we have

Hessy, = A5 Ay, gr = — ALk, g0 = AL(A& — dr),
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dipr = —gly + Bidi = —Af(Ax&ir — tg) + Budy
—Ap ARG — q Ay Agdy + Ajty, + Bid;.

If we let dj = Aj % provided that such z; exists, then
dip1 = Ap(ty — Ap&y — qArdy + Biz1).
Further if we denote r; = @y — A&, then clearly
Ti41 = U — Ap1 =11 — aAgd,
and
div1 = A5 (r) — g Ardy + Bizr)

hold. We can generate the next search direction by diy1 = Ajz41 with 2141 = 1 — g Ardy +

Bizi = ri41 + Brz- Hence, the conjugate gradient iterates can be genereated in the following

way:
1 = L t+ad (30)
d = Az (31)
2ie1r = mip + Bz (32)
rn = - oqAedy (33)
T
o = 9 di _ | Agra|® (34)
leHess dp || Ard|?
| Agrell?
b = e (35)
| Afrd|?
o1 = 1+ [oy (36)
The initial values are & =0, dy = —gi, 21 =11, 11 = U = ys — F(21), 01 = 1. Here another

scalar oy is added, which will be used for the analysis of the truncated conjugate gradient
method.
One tool for the analysis of the truncated conjugate gradient method is the so-called residual

polynomials (see [10, 3]). Let II; be the set of all polynomials of degree [ or less, and set
I} = {p € I; : p(0) = 1}.

Then there is an 1-1 relation between elements & € K;(Afax; AfAx) and p € II) via the

representation
of the corresponding residual, where C;(Ajix; AjAr) is the I-th Krylov subspace

Ki(Ajin; AfAr) = span{Apa, (Aj Ag) e, -, (AfAe) ™ A ).
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For simplicity, p; € IIY denotes the residual polynomial associated with &, the I-th CG iterate.

The bilinear form

< p,q >:= (p(ApAf)tr, q(Ar Af)ar,)

defines the inner product for p, ¢ € II;. If ¢ € II;_; is an arbitrary polynomial of degree [ — 1
then the polynomial p given by p(A) = pi(A) + tAg(A) belongs to IIY for every t € R. Noticing

that p; solves the minimization problem
< p,p >—> min for p € TI).
Hence,
1d
< pi,A\g >= oY <p,p>|t=0 =0, for all ¢ € II;_;. (38)
If we define ¢ = q;—1 by p; = 1 — Aq;—1, then clearly we have that,

<pl7]- >=<p,,p >, (39)

which will be used for later analysis.

From (30)-(36) and the above definitions, we have that

i N) = prei(A
2 = si(ApA)ig, s1(\) == ’% € 1I,. (40)

It was pointed out by [8] that in general s; does not belong to II?. Instead, since the vectors z;

are updated by zj11 = ri1 + Gz with rpq = @ — Ag&yr, it follows from (40) that

s141(A) = pir1(A) + Bisi (), (41)

and hence, s;(0) and o; of Algorithm 2.3 share the same recurrence relation (this in fact has

been observed by [8]), i.e.,
81(0) = 0j. (42)

With the above analysis, we can now present the monotonicity of the iterates for perturbed

right-hand side.
Theorem 3.1 Let v > 2, I* € N. If Assumption 1.1 holds and if
. - zi||||@ .
ik = Axsil? + i = Angraa P > o o o imnz e )

then ||€T — &|| is strictly monotonically decreasing for 1 =1,2,--- ,1*, and

-
IEIP = 1EF = &esall® > (v = 2wllaell Y eullll- (44)
=1
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Proof. By induction, we obtain

14 — & — audy|?

16t =&l —2(6" — &, audiz) + (Ajzr, cuAjz)
= € —all? — (A" - 246 — w Aydy, 21)

= ||t = Gl — aulin — Ar&r, 20) — iy — Apigr, 1)

+2CK[(’L~Lk — Akar, Zl).

167 — &4 |I?

From the definitions of p; and z;, we have
1€t = &IIP = NIET = &all? = aun < prysi > +ou < pryr, s> =200 < g — ApET 20>

By (42), si(A) = o1 + Ag(\) for some polynomial ¢ € II;_;, and hence from (38) and (39) we
find that

et = &l? = 167 = &l = (< pi, 1 > + < pray1, 1 >) — 20y < ity — Apét, 2z >
= o (< pi,pr >+ < pry1,Piy1 >) — 20 < Uy — Akar,Zl > .

Since < p,pr >= ||ar, — Ax&l|?, hence it follows from the above relation and (43) that
1€F = &ll” = 1E7 = &l > wyellzllllaell — 2weflaellllzll, for all 1 =1,--- 1% (45)

Thus, the monotonicity of [|€T — &]| follows from the above inequality and the assumption
v > 2. Relation (44) follows by taking the sum of (45) for I = 1,--- ,1* and observing the fact
that & = 0. Q.E.D

Remark 3.2 We have noted that in general s; will not belong to I, however, §; := s;/o; € I}

Hence from the minimization property of the truncated CG we obtain
_ _ 1 N 11
lix — Ap&ipr |l < |t — Ap&lll =< pi,pr >2<< 81,8 >2= p < sp, 8 >2= ;ZHZIH- (46)
This together with (43) yield that

2lae — Ar& > > lae — Ae&e ) + llin — Ae&rsa |

||

21 . -
| > ol e — Axg |l

which indicates that
N wy||tg N
i — Aggee ) = SIS iy

Since ||iy — ARET|| < wl|ar|| according to Assumption 1.1, this shows that I* can not exceed [y,

the smallest index of the inner iteration.
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4 Convergence of Trust Region-CG for Exact Data
Before presenting the proposition in the following paragraph, we first give an assumption:
Assumption 4.1 Assume that in each inner iteration, & satisfies

ik = Axtall > wilfinll, with w? = yw (47)
until convergence, where 0 < w <y~ 1, v > 2.

Assumption 4.1 is closely related with the termination rule of Algorithm 2.3. Where, 7 in STEP
2 serves as the number w; here. Once the opposite inequality of Assumption 4.1 is satisfied, we

stop the inner iteration.

Proposition 4.2 Suppose that Assumption 4.1 holds. The inequality (47) indicates that (43)
is true if | > 0. Furthermore, there are only finitely many l for which (47) holds.

Proof. From the Remark 3.2 we know
1 oA 1
— |zl =< 31,8 >2 .
al
It is proved by [10] that < §;, §; > is strictly monotonically decreasing with I, consequently

1 1 .

—lzell < —llzll = llrell = llall-

gy g1

The above inequality together and (47) indicates that (43) is true for [ > 0. From Remark 3.2,
we see that (47) holds for only finitely many indices I. Q.E.D

Now assume that ys = y, we first prove the monotonicity of the trust region-cg algorithm,
i.e., T + &, is a better approximation of £ than z. We also assumed that F(z) = y has a
solution z+ € B C D(F).

Proposition 4.3 Assume that Assumptions 1.2 and 4.1 holds, then the iteration error ||zt —

xi|| is monotonically decreasing.
Proof. According to Assumption 1.2, (11) holds for x = ™, & = =y, i.e.
ly — F(zr) — F'(zx) (@™ — )l < dlly — F(zp)]-

Note that ys = v, the above expression indicates that Assumption 1.1 is fulfilled with 0 < d < 1.
Due to Assumption 4.1,

e — Ap&ll? > ywl|agl?

is satisfied. Hence from Proposition 4.2, the requirement of Theorem 3.1 is fulfilled.
From our notations, we have that zx11 = x + &, . Thus, from ¢ =zt —zy, €8 - &, =

xt — 21 and Theorem 3.1, we see that |27 — zpi1|| < |27 — ]| QED
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Remark 4.4 Propostion 4.3 also implies two inequalities:

1
Nurllllwe]l < ———=5 (le™ = zxl|” = [le™ = zppa[|”) (48)
d(y —2)
and
| Az ||?
llu||* < m(llﬁ —zi|)® = [l — zppal]?). (49)

(48) is straightforward as |Jur — ArET|| < dljugl] with 0 < d < 1. (49) follows from relations
lurllllwll > e fluellll 2]l = ey [fux]?

and

Arr |2 Arug? N
_ “ k ”| _ H k “ > HAk” %

a1 = =
P AR T A Afug]? =

Theorem 4.5 Given the exact data ys = y and suppose that Assumptions 1.2 and 4.1 hold.
Then the iterates {xy} generated by Algorithms 2.1 and 2.3 converge to a solution of (1) as

k — oo.

Proof. First we prove that {x}} forms a Cauchy sequence. Let us denote the iteration errors

by ex = 2t — zy. Given k, j € N with k > j, let v € {4,--- ,k} be chosen in such a way that
ly = Fa)ll < lly = Fzi)ll, i =4, , k.
Consider now
llew —eill* = llesl* = lleull” + 2(ew, 0 — €;).- (50)

Note that
v—1
— — *
€j —€y =Ty —Tj, Ty —Tj = E A w;,
i=j
[;—1 .
where A; = F'(z;), w; = )_,", a;z. Hence we obtain

v—1 v—1
(ewrew =)l =D _(Ajwi e,)] < [lwilll|Ases |-
i=1 i=1

We can estimate that

ldies|| = [lAie; — Ai(es — 3|
< lly = Fai) — F'(zoeill + |F(zy) — F(xi) — F'(xi)(er — e3)|
+lly — F(av)ll
< dlly = Fz)l| + dl|F(z,) = F(zi)|l + lly = )|l
< 2y = Fz)ll+ 1+ d)lly = F(z,)ll < (1 +3d)[ly — F(x:)|l-
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Relation (48) and the above expression give that

(1430 Y luillly — F (a0

1+3d
o (et =zl = 2" — 2 |),

IN

|(€V:€V - ej)|

which, together with (50), yields

lew = eill” < Clla™ = ;)1 = lla* = @ |*)

with C' = Z’Cl((lj_id)) + 1 independent of v, j, k. Similarly one can obtain
lej —eull” < C(lla* =z |I* = lla™ = ),

hence

lles — exll” < 2(llex — evll” + llew — €51)

< 20(la* — 2l = llat — ). (51)

|z — ;]

Therefore, {zy} form a Cauchy sequence because the monotonicity of {||z* — x|}
Denote the limit of zj by z. From (49) we know > ., [Juk||* converges, and therefore

F(z) — y as k — oo. This indicates that z is a solution of (1). QED

5 Regularity of the Algorithm for Inexact Data

Now we consider the case where inexact date ys instead of y. It is assumed that (2) is satisfied.
Our stopping rule is based on the discrepancy principle, i.e., we terminate the calculations

at the smallest iteration index kp such that the discrepancy inequality
llys — F(xp)|| < @6, with & > 1 (52)

holds.
We denote mi the corresponding iterates and consider the regularity of the trust region-cg

algorithm.

Theorem 5.1 Assume that Assumptions 1.2 and 4.1 hold. Let x be a solution of (1) with F
satisfies (11) for some 1 > d > 0 in a ball B C D(F) around x. Let @ in (52) be chosen that

@ > 1L Then ||z — 2|| is monotonically decreasing. Moreover, Algorithm 2.1 terminates

after kp < oo iterations.
Proof. We prove that

Iz = 234l < llz = 23| (53)
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with z a solution of (1).

Using Assumption 1.2, we estimate that

llys — F(z§ — F'(z)(x —28)|| < 6+||F(z) — F(x) — F'(z})(z — 2)||
< §+dlly — F(a)||
< (L+d)s+dllys — F(z})]).

According to the discrepancy principle, ||y5 — F(l‘i)” > M as k < k‘D, hence
§ < ! || ( 6)”
F(x o
~11Ys k

and

1+d+w
llys — F(f, — F'(23) (x — 23)|| < ——llvs — F(xy)].
By assumption, 0 < (1 +d + @)/@ < 1, hence Assumption 1.1 is fulfilled. Consequently
Propostion 4.3 applies and the monotonicity assertion (53) follows as in the proof of Proposition
4.3.
Next we show that there are only finite number of iterations. In fact as the same as in the

proof of (49), we have

llys — F(2)II” < llz = 23]* = lle = 2} 11%) (54)

_L

d(y-2)

with L = sup{||F" (£2)||*} for all k < kp.
Assume that (53) holds for z = 2+. Now taking the sum of (54) for k =1,2,-+- ,kp — 1 we

obtain

kpfl
L
(kp = 1)&%6* < Y~ lys = Fa) P < =——:[la™ — o1 |” < oo.
Pt d(y - 2)
This indicates that kp is a finite number. Q.ED

Theorem 5.2 Assume that F(23) — F(zy) as § — 0. If k < kp for all § sufficiently small,
thenmi%xk for k <kp as 6 — 0.

Proof. Given sufficiently small number €, we want to prove ||z — x| < € as § — 0 for
k < kp. We proceed by induction.
Assume that :ri — xp as 6 — 0, and that £ + 1 < kp. Note that

_ ) _ .0 §
Tri1 = Tk + &,y Thp = Tp &,
lp—1 Ip—1

&, = F(xk)* Z Qi Zi, Eldk = F(l‘i)* Z agz?’
i=1

i=1
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we can estimate that

lzgy — zkgrll < l2g — @l + 1€, — &l
Ip—1
< led = @il + || F(22)* Z (alz! — a;z)||
-
+|(F(z3)* — F(xx)") Z a;zi|
=1
< lwg =zl + |F @) (e — 1) miax{lla?z? — a;zi|}
Ip—1
+|F(x3) — F ()]l Z a;zi| (55)
=1

By the induction assumption xi — x), we have that
F(x)) — F(zy).

Therefore, it follows that o — a;, 2 — z;. Consequently, it from (55) that xiﬂ — Tpy1-
Q.E.D

Theorem 5.3 Assume that F satisfies (11) in some ball B C D(F) and let ys, x5 as before.
Then the iterates x, generated by Algorithms 2.1 and 2.8 converge to a solution of (1) as k — oo
and § — 0.

Proof. For simplicity, We use k(J) instead of kp in the following analysis.

From Theorem 4.5 we know that iterates xy converge to a solution of (1). Combining this
fact with Theorem 5.2, we find that the iterates z§ converge to a solution of (1) for k < k(J)
as 6 — 0.

Now assume that k(§) — oo as § — 0, and denote z the limit of the iterates zy, 7 is a
solution of (1). It suffieces to consider subsequences {k(d,,) }, which are monotinically increasing
to infinity as n — oo and d,, — 0. Without loss of generality, let us consider k(d,,) > k(d,) for
m > n. By the monotonicity of z, i.e., Theorem 5.1, we have

lzgzs. = a1 < N2y, — 21| < 2 (sny — k@)l + lzags,) — 2711
Given a sufficiently small number € > 0 and for some sufficiently large number n, ||z4,) —
x7|| < €/2 by Theorem 4.5. On the other hand, for sufficiently large number m and fixed
n, ||:vi((gz)n) — z(6n)|| < €/2 by Theorem 5.1. This proves that ||a:i*(”6m) —at|| < e for all m
sufficiently large, and thereafter a:i*(”am) — 2t as m — oo. Hence, we see that 2§ — z7 as
k — oo and 6 — 0. Q.E.D.
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6 Numerical Test

In this section, we give an example to test our algorithm. The example is the inverse Gravimetry

problem (see [23]). We write it as
Fz): X —Y

b
F(z)(t) = / k(t,s,x(s))ds = y(t), t € [c,d]. (56)

2

with k(t,s,z(s)) = In L“’) Clearly the kernel k is defined on the set IT = {[c,d] x

)+ (a(s)H
[a,b] x R} and k(t,s,z(s)) € C1(II). The first derivative F'(x) : X — Y is defined by
: b ok
[F (@)ul®) = [ 5-(ts,2(s))uls)ds, t € [c,d], (57)

a

where the kernel %(t, s,x(s)) can be evaluated by

2(H — xz(s))

ok
—(t,5,2(s)) = (t—s)2+ (z(s)

oz H)?

F (z) is compact, since the kernel is square integrable.
Now, we will set up the problem of approximate determination of normal pseudosolution to
the equation (56).

For simplicity, two equidistant grids on intervals [a, b] and [c, d] are applied:

b —
En(s):{sj:Sj:a+hs(j_1)7j:1;27"' 7”}) hs:n—_cll_a
d—c

Sm(t) = {ti :ti =c+h(i—1),i =12, ,n}, hy = —.

In this way, the spaces of all grid functions defined on ¥,,(s) and X,,(¢), respectively, are treated
as X,, and Y,,.
The integral operator F' gives rise to an operator F,, : X,, — Y;,, by

b
[Frn(2)]i = / k(ti,s,z(s))ds, 1 <i < m.
Similarly the derivative operator F' (z) yields an m X n matrix:

b
Fo@lis = [ Gltissa()gs(6)ds, 1< i <m, 15 <n

Where ¢;(s) we used is the standard linear basic functions
:7?::, Zf s € [S]’_l,S]’],
¢j(s) = 22 if s € [s),5541],
0, else.

In which, s; = jh, h = %, j=1,2,--- 'n. The integral can be computed numerically.
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plot of the true and the computed solution plot of the true and the computed solution
T T T T T T

Figure 1: Solution of the inverse problem: nonlinear Fredholm equation

We take [a,b] = [¢,d] = [0,1], H = 0.1 and different m, n to give a discretization. Our true
function is @ypye(s) = 1.3s(1 — s) + 0.2, and it is discretized by evaluating it at the points s; to
give the components z; of x. The right-hand side y is generated by integral (56).

The numerical results are shown in figures 1 and 2. In all of these figures, the true solution
is denoted by solid line, the approximate solution is denoted by dotted line.

First we choose: n = 30, m = 30, o = 4.8, 7 = 0.8, Ay = 0.1 with perturbation error level
0 = 0.01. The results are shown in the left of Figure 1; It needs 18 inner iterations and 16 outer
iterations to generate convergence.

Then we choose n = 40, m = 40, © = 6.7, 7 = 0.8, Ag = 0.1, with small perturbation
0 = 0.005, The results are shown in the right of Figure 1. It needs 20 inner loops and 18 outer
loops to generate convergence.

Finally we choose n = m = 50, Ay = 0.1 with large perturbation § = 0.05 and dominant
parameter @ = 6.8, 7 = 0.9 to give a computation. The results are shown in Figure 2. It needs

7 inner iterations and 10 outer iterations to generate convergence.

Remark 6.1 To safequard Pred is not too small, we choose € = 1.0 x 10732, If Pred < ¢,
then we regard it as zero and stop the inner iteration. However, this is not activated in our

numerical test.

Remark 6.2 In practical applications, the right-hand side is the observation data ys which
contains noise or error instead of the exact data yirue. To give a reasonable simulation of the

observation data, we add Gaussian white noise rand to the right-hand side Yirye, i.e.,
Ynoise = Ytrue + 0 * rand, (58)

where rand is a vector with its components some random numbers in [0, 1].
Note that 6 should not be too small or too large. If 6 is too small, according to (58), the

noise will not be enough important to give interesting results. However, if § is too large, the
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plot of the true and the computed solution
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Figure 2: Solution of the inverse problem: nonlinear Fredholm equation

observation is a poor approximation to the original problem, it will also not enough to give a

reasonable results.

7 Conclusion

We have establised the convergence and regularity of the trust region-cg method for nonlinear ill-
posed inverse problems. It deserved pointing out that Plato in [18] had establised the regularity
property of the conjugate gradient method. Later on, Hanke in [8] had established the regularity

of Newon-CG method. All of the methods are stable for solving ill-posed inverse problems.
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