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Abstract

In this paper we propose a cubically convergent algorithm. Our basic tool is the
Tikhonov regularization and Morozov’s and damped Morozov’s discrepancy
principles. Numerical experiments for integral equations of the first kind are
presented to compare the efficiency of the proposed algorithms.

1. Introduction

It is well known that inverse problems are encountered in many fields of application ranging
from science to engineering [3,5, 11]. These problems often lead to solving operator equations
of the first kind, which, by their nature, are ill-posed in the sense of Hadamard [3, 11]. This
means that the required solution is extremely sensitive to the perturbations in the observation
data. Thus some kind of regularization method must be utilized to obtain the stable resolution
of the problems.

So far, a great amount of research work has focused on the development of appropriate
strategies for selecting the regularization parameter (see [3,4,9, 12] and references therein).
However, Kunisch and Zou [8] have pointed out that much less work has been carried out on the
numerical realization of such strategies, and in fact it appears that very few of the strategies are
utilized for practical applications. One of the causes may be the huge amount of computation
required in the iterative process of choosing a reasonable regularization parameter.

Some existing efficient methods for solving the discrepancy principle are the Newton
method with quadratical convergence and the quasi-Newton method with superlinear
convergence (see [8]). This paper presents a cubic convergence algorithm. Like the Newton
method and the quasi-Newton method, this new method could be used for most of the posteriori
parameter choice strategies.

Let us consider a linear ill-posed inverse problem of the form

Az=u ey
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where A : F — U is a bounded linear operator with domain D(A) in a Hilbert space F
and with its range R(A) in a Hilbert space U and u € U. Here we call problem (1) ill-posed
in the sense that the solution of (1) does not depend continuously on the right-hand side data
which are often obtained by measurement and hence contain errors. Let us assume that us are
observation data of u, and

llus —ull <8 @)

with a given noise level § > 0. Now the computation of solution (1) from the observation data
us becomes an important topic.

Among the methods developed to solve linear ill-posed problems, Tikhonov regularization
is the most well known one. In this method, the solution z§ of the minimization problem

M®(z, us] = {l| Az — us||* + allz — 2*|1%) (€)

is used to approximate the solution of (1), where o > 0 is the regularization parameter and
Z* € D(A)is ana priori guess of solution (1). Under appropriate conditions on A, the stability
of z§ withrespect to us can be guaranteed, and with a suitable choice of «, z§ can be guaranteed
to converge to a z*-minimum-norm-solution (z*-MNS) z' of (1), i.e. converge to an element
7" € F with the property

Al =u and Iz =zl = min {llz —z*|| : Az = u}. )
zeD(A)
Now the regularization parameter o affects not only the convergence of z§ but also the rates

of convergence, and hence the choice of regularization parameter is vital.
Obviously (3) is equivalent to the following so-called Euler equation:

(A*A+al)(z — %) = A*(us — AZY) (5)

where A* denotes the Hilbert-adjoint operator of A, I denotes the unit operator. The following
theorem is verified by Kunisch and Zou in [8].

Theorem 1. The solution z§ of the Euler equation (5) is infinitely differentiable at every a > 0,
which satisfies the following equations:

dz¢
(A*A +ozl)d—0‘: = —(z5 — 27, ©)
. dkz¢ dk-1z¢
(A A+a1)da" :_kdak—l’ k=23,.... @)

2. A cubic convergence algorithm

Morozov’s discrepancy principle has been used for linear ill-posed problems to choose the
regularization parameter and « is determined from the following nonlinear equation:

Az —us| = 6. ®)

In some applications, the Morozov principle may not be so satisfactory. For example, if
the exact solution z' satisfies z¥ — z* € R((4*A)") for some v > %, the optimal convergence
of the regularized solutions is not obtained [3]. We therefore consider a more general class of
the damped Morozov principle [7,9] given by

IAz§ — usl® +a” |15 11* = 8 ©

where y € [1, oo]. Obviously, the exact Morozov principle (8) is a special case of the damped
case with y = oo.
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Throughout this section we assume that us ¢ ker A*. We observe that equations (8) or (9)
can be expressed in terms of o as

p(@) := | Az§ — us|* — 8° (10)

or
p(@) = |Az§ — us||® +o” [|z5 > — 8% (11)
The following lemma (also in [8]) tells us that the first-order derivative of ¢ («) is positive.

Lemma 2. Let ¢ («) be defined as (10) or (11) and suppose that us ¢ ker A*. Then for
equation (10), ¢' (@) > 0, Va € (0, 00); for equation (11), ¢'(a) > 0, Vo € (0, 1].

For practical purposes, it certainly suffices to restrict « to (0, 1].
From theorem 1 we know ¢ («) is infinitely differentiable with respect to &, so by truncating
the Taylor expansion after the term (o — a,)?, we have

P (a) = o) + ¢ (o) (@ — o) + 2 (a0 — &) 9" (&) (12)

where &, is between « and «,.
From (12), an iterative formula can be immediately obtained as follows:

2¢ ()
@' (ctn) + (@' (n)” — 20 ()" (o))

Without loss of generality, take (10) as an example. Let B() = |29, ¢’ (@), ¢” (@) can
be computed as follows:

¢'(@) = —ap'(@) (14)
” ’ 2 M dzzg"
¢ (@) = —p'(a) — 2a + (Z(;, W) (15)
dz§

where g'(a) = 2(32, z§). Finding z§, dz§/da, d*z§/da? at the kth step will lead to the
solutions of the following equations:
(A"A+al)(zg — ) = A%(us — AZ") (16)
(A"A+al)z, = (2o —2") (17)
(A*A+al)z, = -2z, (18)

(7

(13)

Apy] = Oy —

do

From equations (16)—(18) we observe that their differences only occur in their right-hand
sides. This suggests that, by utilizing Cholesky factorization (we can choose o > 0 such that
A*A + «l is positive definite) once only with back substitution three times, we can obtain
the vectors zq,, Z,,, Z,,- Now we compute the number of operations for our algorithm: first
to form A*A (only once), the cost is n3; then in each step of «, the cost of the Cholesky
factorization is 73 /6; back substitution three times is 3n?; computing ¢ (), ¢’ () and ¢” ()
the costs are n” +2n, n and 2n respectively. So after A* A is formed, the number of operations
is én3 +4n? + 5n in each iteration. Since the cost of computing ¢ () is 2n and an additional
back substitution is n2, thus there is only a small amount of computation added compared
to the Newton method, but the convergence rate is greatly improved so that the CPU time is
also greatly saved. It should be pointed out here that Eldén [1,2] gave us algorithms for the
regularization of ill-conditioned least squares problems. In his approach (see [1] for details),
he first performed a bidiagonalization of the matrix A once in O(§n3) operations and then
there were only O(n) operations for each iteration. If the number of iterations is larger than 5
to 7 then his approach greatly reduces the number of operations and the number of iterations
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is no longer so essential. However, in our opinion, our method is easier to code and perform
compared to his approach and it is more efficient than the traditional Newton method and
quasi-Newton method.

Now we give the following algorithm.

Algorithm 1 (Cubic convergence algorithm).

Step 1. Input oy > 0, § > 0, e(tolerance) > 0, A, knax, Us, 2%, setk := 0;

Step 2. Solve equations (16)—(18);

Step 3. Compute ¢ (o), ¢' (o) and ¢” (o)

Step 4. Solve for a4 from iterative formula (13).

Step 5. If | g1 — o | < € Or k = kmax, STOP; otherwise, set k := k + 1, GOTO step 2.

Notice that (13) can be written as

o (o) 2

Qpsl = O — — , (19)
* @' () 1+ (1 — 2t (cp))?
where, (o) = % Define the iteration function:
Fe@) =a— 29 G, (20)
¢'(a)
here, G(«) = —=2——. Then (19) is equivalent to
1+(1-2t(a)) 2
a1 = Foy). (2D

We know the functions ¢ («), G («) are both infinitely differentiable, and if we let «* be the
single root of ¢ («) € (0, 1), then 7 (a*) = 0, G(«™) = 1. It should be pointed out here that it
can be ensured that the term 1 —21 («) is positive. Sincea € U (a*, €) (i.e., the e-neighbourhood
of a*), and notice that ¢” () is bounded in (0, 1),s0 1 —2f () = 1—2 Wé‘f‘&";g” can be ensured
to be positive in U (a*, €) if € is sufficiently small. Therefore the iteration formula makes
sense. Now we introduce a well known general pth order convergence result in the following
theorem.

Theorem 3. Let a1 = F(a) be an iteration process, if FP(a) (p = 1,2,...) are
continuous at U (a*, €), and
F'@)=F'(a*)=---=F? Y@*) =0, FP (a*) #0,

then the iteration process is pth order convergent at U (o*, €).
Now we give a short proof of the following theorem.

Theorem 4. Assume that equations (10) or (11) have a root at « = a*, i.e. p(a*) = 0, then
3 U(a*, €)ande > 0, suchthatVay € U(a*, €), the sequence {a}72 | generated by the above
algorithm is locally cubically convergent.

Proof. Obviously F(«) in (20) is infinitely differentiable with respect to o at U(a™, €).

Defining s () = f((‘;‘t)), we compute that

s'(e) =1—1t(a),

¢" ()
@' (a)

s"(a) = —t'(a) = —

2¢”(0[)2 ¢///(a)) .

row@ ( @y P’
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Therefore,
F(a) =1-s@)Ga") —s@)G @) =1-Ga*)=1-1=0,
F"(@") = —s"(a*)G(a®) — 25" (@®)G' (@) — s(@®)G" (a*) = —Z,((a*)) — (@) =0.
o
In the same way we can verify that F"'(«*) # 0, so by theorem 3 above, theorem 4 holds
true. O

Remark 1. Algorithm 1 is locally cubically convergent. But in the numerical experiment, the
initial value oy need not be chosen too strictly. Algorithm 1 is almost convergent for arbitrary
ap € (0, 1). In[2, p234], an approach was shown for Newton’s method that guarantees global
convergence under some conditions by applying Newton’s method to ¥ (8) = ¢(1/8), i.e.
« is replaced by 1/8. For our algorithm, we must ensure the term ¢'(a)> — 2¢ ()¢ () is
non-negative in each step, so the convergence is locally cubic.

3. Hybrid algorithms

A two-parameter algorithm has been suggested in [9], which is efficient for choosing an initial
value «, but not for the whole iterative process.
Let f(«) denote the minimal value function of %M Nz, us], 1.e.
fle@) = 3M°[z(@), 8] = JlAz(@) — us|* + Sallz(@) — 2|2 (22)
we have
fl@) = Hlz(e) = 2*I1° and (@) = (z(@) — 2%, 2 (@) Va > 0. (23)

Throughout this section we assume that us ¢ ker A*. We observe that equations (10) and (11)
can be expressed in terms of f(«) as

fl@) —af'(@) = 8 (24)
and
fl@)+ (@ —a)f (o) =8 (25)

respectively, where y € [1, oo]. Morozov [9] has verified that the regularization parameter o
satisfies a model function

=C|1 d 26
m@) = (—T+a) (26)

where T, C are two parameters. To update the two parameters C and T in the above model
function and consequently solve the Morozov equations (10) or (11) approximately, we have
the following algorithm [9].

Algorithm 2 (Two-parameter algorithm). Set k := 0 and choose ¢y > 0, € > 0.
Step 1. Compute f’(ay) and f (o) using (22), (23). Compute Ty and Cy from

T
m(a) = Cy (1 T +ak) = flo), 27
, Cie T ,
m' (o) = m = (o). (28)

Step 2. Set

=72
e =S _Tk+0l'
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Step 3. Solve for o, the Morozov equation
m(a) —am'(a) = 8. (29)
Step 4. If | a1 — ay |< €, STOP; otherwise set k := k + 1 GOTO (1).

In step 1 of algorithm 2, one needs to compute 7; and Cj from (27) and (28).
Combining (27) and (28) we have

T o [ () f2 )

k= ) k= .
S o) — o f7 (o) S o) — oy f7 (o)

Since us ¢ ker A*, the denominators in (30) do not vanish.

Kunisch and Zou [8] noticed that the two-parameter algorithm is only useful during the
first few iterations (one to three iterations), so combining algorithm 1 with 2, we give a hybrid
algorithm.

Algorithm 3 (Hybrid algorithm).

Step 1. Select o from algorithm 2 after two iterates;
Step 2. Take the above « as the initial value o in algorithm 1 and implement algorithm 1.

(30)

We can also consider combining the Newton method with the two-parameter algorithm
(TPA) (see [8]), since the TPA is useful for giving a good initial guess value. Another hybrid
algorithm is given in [8], i.e. combining the quasi-Newton method with the TPA.

Remark 2. Since the two-parameter strategy can provide us with a good initial guess o value,
the hybrid algorithms will be much better.

4. Numerical experiments

The purpose of this final section is to illustrate the theory from the previous sections with two
numerical examples. The numerical experiments are completed with MATLAB 5.1 on an SGI
workstation.

Throughout this section TPA denotes the two-parameter algorithm [8], Newton + TPA
denotes Newton’s method with the TPA, QN + TPA denotes the quasi-Newton method [8]
with the TPA, CCA denotes algorithm 1 and HA denotes the hybrid algorithm.

The first example is a one-dimensional model problem in image reconstruction from [10]
(also in [6]), which solves the Fredholm integral equations of the first kind:

(A2)(s) = /_ Koz =ue),  sre[-3 7] (1)
with kernel
sinr . .
k(s,t) = (coss +cost) ( > , r=m(sins +sint).
r

For the solution z we choose a simple function with two ‘humps’:
z2(t) = 2exp (—6(t — 0.8)%) +exp (—2(t +0.5)%) (32)

as the true solution zt, and we have chosen the values of the right-hand side u(s) of (31) on
the grid{s;}/_, in [~ %, 5] in accordance with the following rule.

As vector u at the right-hand side we have used the vector obtained by multiplication of
the (m x n)-dimensional matrix A, approximating the operator in (31), by the column vector
z7 of values of the exact solution on the grid {#;};_, in the interval [-7, 7]:

ui =y Aijzr(t)). (33)
j=1
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Table 1. The comparison of efficiency for five algorithms for Morozov’s discrepancy principle.

Algorithms Iter. o* 128" — 2zl N1AZY" — usll/llus|

Newton + TPA 5 1.1176e—6  1.77e-2 6.2527e—6

CCA 9 1.1176e—6  1.77e—2 6.2528e—6
TPA 7 1.1176e—6  1.77e—2 6.2526e—6
HA 5 1.1176e—6  1.77e—2 6.2526e—6
QN + TPA 13 1.1176e—6  1.77e—2 6.2527e—6

This way of choosing the right-hand side guarantees that the minimum of the discrepancy
functional ||Az — u;||> on this set of vectors will be zero. This property of the solution
is essential when using properties of iteration algorithms for solving ill-posed problems.
Tikhonov et al [12] has pointed out that a common property of the majority of iteration
algorithms is the rapid decline of the functional. Therefore an important characteristic of
iteration algorithms is the actual minimal level of the discrepancy functional up to which
the minimization process runs in real time. This parameter makes it possible to estimate
beforehand the error in specifying the initial information for which it makes sense, then apply
the given method. Or, conversely, to choose on the basis of the error in specifying the initial
information an algorithm that is most suitable for solving the given problem. So, if in model
problems we can minimize in real time the discrepancy functional to the 1% level (in relation
to the norm of the right-hand side), then it is clear that when using this algorithm we can, in
general, successfully solve problems in which the error of specifying the initial information is
0.1%.

For this reason, we study the level up to which we can minimize the discrepancy and use
the right-hand side of (31) computed in accordance with (33).

To evaluate the integrals involved, we choose m = n = 100 to divide the interval into 100
subintervals, and on each subinterval the rectangular quadrature rule is used. The accuracy of
specifying the right-hand side is assumed to be equal to § = 1.0 x 107,

In general, when solving (31) we always have to keep track of the fact that the error of
approximating the integral in (31) is substantially smaller than the error § in specifying the
right-hand side. For this it is necessary either to choose sufficiently dense grids (thus increasing
the dimension of the problem and bringing about a substantial increase of computational time
expenditure) or to use more exact quadrature formula.

We should point out here that in (13) the term ¢’ («)> — 2¢ ()" () may be negative if the
initial g value is chosen too approximately. We therefore add a technique in our numerical test.
That is, we denote A = ¢’ ()? — 2¢ (a)@” (@), if A < 0, and we take | Re (+/A) |; otherwise,
we take /A, where Re represents the real part of +/A. But in our numerical example, it was
never activated.

The comparison of the results of the above five algorithms are shown in tables 1-4. For
tables 1-3, the error level is chosen as § = 1.0 x 107#; table 4 gives us a comparison of different
error level § values for the five algorithms. We now give some notations: z§ is defined as in
the previous section, a* stands for the final chosen regularization parameter in the iteration
process; iter. stands for iteration steps; kmax = 200, z* = 0, «g is chosen as 0.1.

From table 1 we see that the parameters and the absolute errors obtained by the above five
methods are the same. Newton + TPA and HA are the two fastest algorithms.

Table 2 compares the CPU time and the iterations of the five algorithms. With an increase
of the discrete matrix dimension, the HA and the Newton + TPA will save a lot of time compared
to the other algorithms.
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Table 2. The comparison of CPU time for five algorithms for Morozov’s discrepancy principle,
where [-] denotes iterates.

m,n  Newton+TPA CCA TPA HA QN + TPA
100 0.05(5] 0.12[9] 0.08[7] 0.06[5] 0.12[13]
200 0.45[7] 0.77[10] 0.73[11]  0.44[6] 0.84[15]
300 1.31[6] 2.75[11] 2.02[9] 1.18[5] 3.17[16]
400 3.38[6] 6.79[11] 5.14[9] 2.99[5] 8.39[16]
600 13.08[7] 21.89[11]  17.12[9] 9.70[5]  28.45[16]

Table 3. The impact of the y value on the choices of regularization parameters by utilizing HA for
damped Morozov’s discrepancy principle.

*

" "
y  Iter  « lz5 —zrll  IlAzg —usll/lusll

1.0 6 1.0036e—10  1.6206e—4  1.9322e—8
1.2 10 4.6559¢—9 2.4234e—4  3.0637e—8
1.3 12 2.2031e—8 6.7713e—4  1.1813e—7
1.5 11 2.1053e—7 3.9000e—3  1.2117e—6
20 10 1.1105e—6 1.7600e—2  6.214le—6
40 10 1.1176e—6 1.7700e—2  6.2527e—6
00 10 1.1176e—6 1.7700e—2  6.2528e—6

Table 4. Comparison of the five algorithms for Morozov’s discrepancy principle with different
error level 6.

§ =10% §=1% §=0.1%

Error level

Algorithms Iter. ||z§‘* —zrll Tter. 2% —zrll  Iter.  1z¢ —z7ll
Newton + TPA 5 3.8740e—1 4 1.2910e—1 3 4.46e—2
CCA 3 3.8740e—1 4 1.2920e—1 5 4.03e—2
TPA 8 3.8740e—1 6 1.2900e—2 5 391e-2
HA 3 3.8740e—1 3 1.2900e—2 2 4.46e—2
QN + TPA 7 3.8740e—1 8 1.2900e—2 5 4.94¢—-2

Table 3 compares the impact of the y value on the choice of regularization parameter for
damped Morozov’s discrepancy principle. With the appropriate choice of y value, we can
improve the accuracy of the solution. Obviously, as y = 1.0, 1.2, 1.3, the absolute error
||z§‘* — zr|| is much smaller than using Morozov’s discrepancy principle.

Table 4 gives us a comparison of the five algorithms for different error levels. From the
table we see that the HA is the most efficient algorithm to obtain the same accuracy of the
solution.

Figure 1 gives us a plot of the exact solution (dotted curve) and the approximate solution
(open circles) by utilizing the HA algorithm. We use the damped Morozov discrepancy
principle for this example, in which y is chosen as 1.0, &g = 0.1,§ = 1.0 x 1074, m = n = 50.

We close this section with a second example from [13]. Varah [13] presented an example
for inverse Laplace transform. In the notation of equation (1) the problem he considered is
defined by

Imax

(Af)(s) =/ k(s,t) f(t)dt = g(s), S € [Smin, Smax], (34)

Tmin
where, the integral kernel is k(s, r) = exp (—st), the exact right-hand side is g(s) = ﬁ
[fmins fmax) = [0, 00), (Smins Smax) = (—1, 00). Through simple manipulation, we compute
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Figure 1. Reconstruction results: approximate solution, open circles; exact solution, dotted curve.

Table 5. The comparison of efficiency for five algorithms with g = 0.1, § = 1% for Morozov’s
discrepancy principle.

Algorithms Iter. o I = frll IARE — gsll/ligsl
Newton + TPA 6 3.4279e—4  3.46e—2 5.50e—3
CCA 5 34270e—4  3.30e—2 5.50e—3
TPA 69 3.6851le—4  3.6le—2 5.50e—3
HA 4 34270e—4  3.30e—2 5.50e—3
QN + TPA 10 3.7455¢—4  3.67e—2 5.50e—3

Table 6. Convergence of the HA with op = 0.1, y = 1.4 for damped Morozov’s discrepancy

principle.

5 1% 2% 4% 7% 10%

Iter. 6 6 6 5 5

o* 7.1807e—5  1.8287e—4  4.6172e—4  9.7207e—4  1.6e—3

17 = frll 2.59e—2 3.06e—2 3.82e—2 5.24e—2 6.53e—2
N

”’%”7”&” 5.40e—3 1.08e—2 2.15e—2 3.76e—2 5.36e—2

8

that the exact solution is fr(¢) = t exp (—¢). In order to simulate measurement inaccuracies
we add noise to the right-hand side g as follows:

gs(s) = g +8 x rand(s),

where rand(s) is random perturbation to the right-hand side and $ is the noise level. Our
purpose is to numerically reconstruct the exact solution f from g;.

In our simulations we restrict [fmin, fmax] = [Smins Smax] = [0, 10]. We choose m = n =
100 and use the mid-point rule to get a discrete equation. Let the other notations be the same
as in the first example; the numerical results are shown in tables 5-8.

From tables 5—7 we see that the HA algorithm works really well even with Gaussian white
noise. The absolute error ||f5"‘* — fr|l can keep up to O(1072).

Table 8 gives us a comparison of the impact of the y value on the choice of regularization
parameter for the damped Morozov discrepancy principle. The noise level is § = 5%. We
see that the absolute error || f;‘* — frll for y = 1.5 is smaller than for the other y value.
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Table 7. Convergence of the HA with op = 0.1 for Morozov’s discrepancy principle.

) 1% 2% 4% 7% 10%
Iter. 4 4 4 5 5
o* 3.4270e—4 7.7413e—4 1.7000e—3 3.3000e—3 4.9000e—3
||fl§"* — frll 3.30e—2 5.21le—2 7.12e—2 8.65e—2 9.87e—2
AfY —
W 5.50e—3 1.10e—2 2.19e—2 3.82e—2 5.44e—2
85

Table 8. The impact of y’s value on the choices of regularization parameters by utilizing HA for
the damped Morozov discrepancy principle, § = 5%, g = 0.1.

y  lter. o I = frl AL — gsl/lesll
1.0 8 4.1139e—5  3.075e—1 2.67e—2
12 6 2.1140e—4  1.20e—1 2.68e—2
13 6 6.2148e—4  4.28e—2 2.69e—2
1.5 5 9.1251e—4  3.80e—2 2.70e—2
20 5 2.10e—3 7.28¢—2 2.73e-2
40 5 2.20e—3 7.71e-2 2.73e—-2
o 5 2.20e—3 7.71le-2 2.73e-2
0.4 ; w w w w w w w w
O%O
035 o % 1
o
° Q
0.3r % 1
© o
02571 e 1
02 [ Oo ]
o
[} OO
015 % 1
01 ° ]
<2
0.05 ¢ ]

o e, }
0 10 20 30 40 50 60 70 80 90 100

Figure 2. Reconstructions after five iterations.

Therefore the choice of y is crucial. For actual computations one will have to use experience
with synthetic data to choose y.

Figure 2 gives us a plot of the exact solution (dotted curve) and the approximate solution
(open circles) by utilizing the HA algorithm. We use the damped Morozov discrepancy
principle for this example; where y is chosen as 1.4, ap = 0.1, § = 10%, m = n = 100.

5. Conclusion

From the above two examples we conclude that the HA is the fastest algorithm. This is not by
chance. Because the TPA can ensure the selection of a reasonable initial ot value, with this o
value the CCA can realize the fast numerical implementation of selecting the regularization
parameter so as to obtain the stable regularization solution.

However, we should point out that all the algorithms presented in this paper use direct
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solvers to solve equations (16), or (17) and (18). As a consequence of this the time cost is
still high, especially for large-scale problems (say, two- and three-dimensional problems). We
suggest the user applies either our cubic convergent method or Newton’s method or hybrid
algorithms for problems of small size or for one-dimensional problems. For large problems,
one should use the iterative solvers (such as the conjugate gradient method) instead.

Acknowledgments

This paper was completed with financial support from the Natural Science Foundation of
Hebei Province grant no 698047. The first author was also partially supported by Chinese
NSF grant 19731010 and the Knowledge Innovation Program of CAS.

References

[1]1 Eldén L 1977 Algorithms for the regularization of ill-conditioned least squares problems BIT 17 134-45
[2] Eldén L 1984 A note on the computation of the generalized cross-validation function for ill-conditioned least
squares problems BIT 24 467-72
[3] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer)
[4] Groetsch C W 1984 The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind (Boston,
MA: Pitman)
[5]1 Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)
[6] Hansen P C 1992 Numerical tools for analysis and solution of Fredholm integral equations of the first kind
Inverse Problems 8 849-72
[7] Kunisch K 1993 On a class of damped Morozov principles Computing 50 185-98
[8] Kunisch K and Zou Jun 1998 Iterative choices of regularization parameter in linear inverse problems Inverse
Problems 14 1247-64
[9]1 Morozov V A 1984 Methods for Solving Incorrectly Posed Problems (New York: Springer)
[10] Shaw C B Jr 1972 Improvement of the resolution of an instrument by numerical solution of an integral equation
J. Math. Anal. Appl. 37 83-112
[11] Tikhonov A N and Arsenin V'Y 1977 Solutions of Ill-Posed Problems (New York: Wiley)
[12] Tikhonov A N, Goncharsky A V, Stepanov V V and Yagola A G 1995 Numerical Methods for the Solution of
1ll-Posed Problems (Dordrecht: Kluwer)
[13] VarahJM 1973 On the numerical solution of ill-conditioned linear systems with application to ill-posed problems
SIAM J. Numer. Anal. 10 257-67



