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Abstract

In this paper, we consider the direct solution of the kernel-based bidirectional reflectance distribution function (BRDF) models for the retrieval
of land surface albedos. This is an ill-posed problem due to nonuniqueness of the solution and the instability induced by error/noise and small
singular values of the linearized system or the linear BRDF model. A robust inversion algorithm is critical for the BRDF/albedo retrieval from the
limited number of satellite observations. We propose a promising algorithm for resolving this kind of ill-posed problem encountered in BRDF
model inversion using remote sensing data.

New techniques for robust estimation of BRDF model parameters are needed to cope with the scarcity of the number of observations. We are
reminded by Cornelius Lanczos' dictum: “Lack of information cannot be remedied by mathematical trickery.” Thus identifying a priori
information or appropriate constraints, and the embedding of the information or constraints into the regularization algorithm, are pivotal elements
of a retrieval algorithm. We develop a regularization method, which is called the numerically truncated singular value decomposition (NTSVD).
The method is based on the spectrum of the linear driven kernel, and the a priori information/constraint is based on the minimization of the
l2 norm of the parameters vector. The regularization algorithm is tested using field data as well as satellite data. Numerical experiments with a
subset of measurements for each site demonstrate the robustness of the algorithm.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Potential and limitations of information extraction on the
terrestrial biosphere and other problems for retrieval of land
surface albedos from satellite remote sensing have been con-
sidered by many authors in recent years (see, e.g., the excellent
papers by Pokrovsky and Roujean (2002) and Pokrovsky et al.,
(2003) and references therein, which include an exposition of
the kernel-based bidirectional reflectance distribution function
(BRDF) models and comparison of several inversion techni-
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ques). Verstraete et al. (1996) required that the number of
independent observations should be greater than the number of
the unknown parameters to describe the physical model as an
overdetermined system (see Proposition 3 in Verstraete et al.,
1996). However, a limited or insufficient number of observa-
tions is one of the severe problems for the estimation of BRDF.
Therefore, new techniques for the robust estimation of BRDF
model parameters due to the scarcity of the number of
observations are desirable. In Li et al. (1998, 2001), the authors
used a priori information to convert the problem into an
overdetermined system to find its least-squares error solution,
which is known as a kind of a priori constrained minimization
problem. So, from the computational view, their method is only
suitable for an overdetermined system.
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With the progress of the multiangular remote sensing, it
seems that the BRDF models can be inverted to estimate struc-
tural parameters and spectral component signatures of Earth
surface cover type (see Roujean et al., 1992; Strahler et al.,
1999; Wanner et al., 1995). Therefore, quantitative remote
sensing seems to be an appropriate way to deal with these
problems. Since the real physical system that couples the
atmosphere and the land surface is very complicated and should
be continuous, sometimes it requires a very large number of
parameters to describe such a system, so any practical physical
model can only be approximated by a model which includes
only a limited number of the most important parameters that
capture the major variations of the real system. Generally
speaking, a discrete forward model to describe such a system is
of the form

z ¼ hðC; SÞ; ð1Þ

where z is a single measurement; C is a vector of controllable
measurement conditions such as wave band, viewing direction,
time, sun position, polarization, and so forth; S is a vector of
state parameters of the system approximation; h is a function of
C and S, which is generally nonlinear and continuous.

With the ability of satellite sensors to acquire observations
for multiple bands frommultiple viewing directions, while keep-
ing S essentially the same, we obtain the following system of
nonhomogeneous equations

Z ¼ hðC; SÞ þ n; ð2Þ

where Z records the values of multiple observations or mea-
surements. The observations/measurements Z is a vector in RM ,
which is an M dimensional measurement space with M values
corresponding to M different measurement conditions; h is a
vector-valued function; and, naRM is the vector of random
noise. We assume that the system is consistent and that there are
m parameters to be determined. Clearly, if more observations can
be collected than the existing parameters in the model, that is,
MNm, the system (2) is overdetermined. In this situation, a tra-
ditional solution may not exist. We must define its solution by
some other manner, for example, by using the least-squares error
(LSE) solution. However, as stated in Li et al. (1998), “For
physical models with about ten parameters (single band), it is
questionable whether remote sensing inversion can be an over-
determined one in the foreseeable future.” Therefore, the inver-
sion problems in geoscience seem to be always underdetermined
in some sense. Nevertheless, the underdetermined system can
sometimes be converted to an overdetermined one by utilizing
multiangular remote sensing data or by accumulating some a
priori information, provided that such data or information exist
(see Li et al., 2001).

It is well known that the land surface is not Lambertian, i.e.,
the surface cannot be assumed to reflect isotropically (i.e.
equally at all angles), which is referred to as the “diffuse
reflector” or sometimes the “hemispherical reflector”. The as-
sumption of Lambertian can of course lead to large errors for
surfaces with high amount of anisotropy. Instead, the anisotropy
of the land surface can be best described by the bidirectional
reflectance distribution function (BRDF). Practically, when we
retrieve albedos, we only know reflectances in a limited num-
ber of angles. Therefore, we need to invert the kernel-based
model to obtain the BRDF, so as to compute the albedos. The
state-of-the-art BRDF model used in MODIS (Moderate Reso-
lution Imaging Spectroradiometer) BRDF/Albedo algorithm is
based on the linear kernel-based models, mathematically de-
scribed as the linear combination of the isotropic kernel, volume
scattering kernel, and geometric optics kernel (see Pokrovsky
et al., 2002; Strahler et al., 1999). The retrieval of the model
coefficients is of great importance for the computation of the
land surface albedos. However, a limited or insufficient number
of observations is one of the most severe problems for the
estimation of BRDF. Therefore, new techniques for the robust
estimation of the BRDF model parameters due to the scarcity of
the number of observations are desirable. In Pokrovsky et al.
(2002), the authors utilized the QR decomposition for the
inversion of the BRDF model. They also suggested to use the
singular value decomposition. Then in Pokrovsky et al. (2003),
comparisons of several inversion techniques and uncertainty in
albedo estimates from the SEVIRI/MSG observing system by
using POLDER BRDF measurements are given. In Wang et al.
(2005), we have proposed an interior point solution method for
the retrieval of land surface parameters, which utilizes the least
l1 norm as an a priori constraint, and stable numerical results
are obtained. In Wang et al. (2006a,b), the authors performed
successive tests to verify the feasibility of the singular value
decomposition method. In this paper, we will thoroughly inves-
tigate the singular value decomposition and propose a regu-
larized version of the method.

We emphasize how to use different a priori information to
invert the ill-posed linear model. We show that the inversion
process can be performed for a system of any order since the
a priori constraint is embedded by the regularization pro-
cess automatically. Our method is based on investigations of the
spectrum of the linear driven kernel. The a priori information is
based on the minimization of the energy (the norm of the so-
lution) induced by the l2 norm of the parameters. We develop a
regularization method, which is called the numerically truncated
singular value decomposition (NTSVD) method. In this meth-
od, small singular values are truncated, hence the instability
induced by noise and small singular values is greatly reduced.
This method can alleviate the difficulties in numerical com-
putation when the discrete kernel is badly conditioned, and is
suitable for retrieving parameters for the kernel-based system of
any order. As well, this method can always find a set of suitable
BRDF coefficients for poorly sampled data. The method is an
improvement of the traditional least-squares error algorithm in
AMBRALS (Algorithm for MODIS (Moderate Resolution
Imaging Spectroradiometer) Bidirectional Reflectance Aniso-
tropies of the Land Surface) (see Strahler et al., 1999). Hence, it
can be considered as a supplemental algorithm for the robust
estimation of the land surface BRDF/albedos. In this paper, the
equivalence between Bayesian statistical estimation and the
Tikhonov regularization method is also addressed and dis-
cussed. Numerical performance is given for the widely used
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field-based 18 data sets among the 73 data sets (see Li et al.,
2001) and for the satellite data.

The contributions of this paper to the literature are:

• to provide a complete regularization theory of solving kernel-
based BRDF models;

• to provide a theory of error propagation for kernel-based
BRDF models;

• to discuss possible applicability of the proposed method to
practical problems in remote sensing.

This paper is organized as follows: in Section 2, we describe
a general physical system as a nonlinear operator equation
which includes the kernel-based BRDF model described in
Section 3. The ill-posedness of the inversion process is ad-
dressed. In Section 3, we provide a summary of the widely used
linear kernel-based BRDF model, and state which kind of com-
binations of the isotropic kernel, volumetric kernel and geomet-
ric kernel will be used in this paper. Section 4 is a main section
consisting of 6 subsections. In Section 4.1, we first study the
discrete ill-posedness of the kernel-based linear problem, and
then present several ways of overcoming the ill-posedness by
incorporating a priori information. Sections 4.2 and 4.3 address
two well-known a priori information-constrained methods: one
is a priori constraint Bayesian statistical estimation, another is
the Tikhonov regularization. They are proven to have the same
effect in overcoming the ill-posedness. Then, in Section 4.4, we
propose a direct regularization method for the stable retrieval of
the model coefficients. The regularization is realized by the
truncation of the small singular values in numerical computa-
tion. We show that this method is suitable for solving under-
determined matrix–vector equations if the sampling data are
poor, and is suitable for retrieving land surface parameters with
multiangular data even if some of the data are poorly observed.
In Section 4.5, we use the proposed method for solving kernel-
based BRDF model. In Section 4.6 we make further comments
about different methods that can be used for solving multi-
angular BRDF model inversion problems. In Section 5, we
derive the error propagation formula induced by the additive
noise and the small singular values of the kernel-matrix. This
formula best describes the noise propagation when the obser-
vations contain additive noise. In Section 6, we give several
computational results to confirm our assertions. In Section 7,
some concluding remarks are given. In Section 8, potential
problems for future research are addressed. Finally, for ease of
reading, we provide appendices which list basic information
about singular value decomposition and truncated singular
value decomposition.

2. Inversion of ill-posed nonlinear physical systems:
a general description

As pointed out in Section 1, a complete model to describe a
physical process is usually a nonlinear continuous physical
model. Let us write this physical process in the form

Kð f Þ ¼ r; ð3Þ
where K is a nonlinear operator which maps function f (retrieved
parameters) from parameter space F into the observation space
R; raR is a given or prescribed or observed function. Generally
speaking, r does not necessarily belong to the observation
space R. The system (3) is in general ill-posed. Recall that an
operator equation F (x)=y, where F is a mapping from a normed
space X into a normed space Y, is said to be well-posed if for each
function y from Y the equation has a solution, the solution is
unique, and depends continuously on the data y. Thus the three
pillars of well-posedness are: existence, uniqueness, and con-
tinuous dependence. If any one of these conditions does not
hold, the equation is said to be ill-posed. For various perspec-
tives on mathematical, numerical, and statistical aspects of ill-
posed inverse problems and applications, see Groetsch (1993),
Engl et al. (2000), Kaipio and Somersalo (2005), Nashed (1974,
1976a, 1981), Xiao et al. (2003), Wang et al. (2006a,b), and
Wang (2007).

When r is not in the observation space one often seeks a
least-squares solution, i.e., a minimizer of the functional

Jð f ; rÞ :¼ jjKð f Þ � rjj; ð4Þ
where the norm used in Eq. (4) is the Hilbert L2 norm, or seeks a
function of minimal norm among all least-squares solutions.
Note that the existence of least-squares solutions and unique-
ness of the least-squares error solution of minimal norm (MNS-
LSE) require additional assumptions on the nonlinear operator
K. If the nonlinear model (3) can be expressed explicitly and
K is differentiable, then Eq. (3) can approximated by its linear-
ization, i.e.,

Kð f̂ Þ þ K Vð f̂ Þs ¼ r; ð5Þ
where the Fréchet derivative K′( f̂ ) for fixed f̂ is a bounded
linear operator. In this case one way to approximate Eq. (4) is by
solving the linear least-squares problem

J apprð f ; rÞ ¼ jjK Vð f̂ Þs� r þ Kð f̂ Þjj2L2 : ð6Þ

However, this formulation cannot suppress the ill-posedness
of the system (3) since the linearized problem usually inherits the
ill-posed properties of the nonlinear problem. For ease of
notation, let us denote K′( f̂ ) by L and denote a singular system
of L by {σk; uk, υk} (see Appendix A). Then Luk=σkυk and
L⁎υk=σkuk, where L⁎ is the adjoint of L, and we have the fol-
lowing singular value expansions

Lf ¼
Xl
k¼1

rkð f ; ukÞυk ; faF ;

L⁎r ¼
Xl
k¼1

rkðr;υkÞuk ; raR:

Here (·, ·) denotes inner product in the appropriate space. With
the singular value expansion of the operator L, the solution of the
MNS-LSE problem can be approximated by

slse ¼ Lyðr � r̂Þ ¼ ðL⁎LÞyL⁎ðr � r̂Þ ¼
Xl
k¼1

ðr � r̂;υkÞ
rk

uk ;
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where L† is the Moore–Penrose (generalized) inverse. Recall
that the Moore–Penrose inverse of a linear operator L is the
operator that assigns to each vector r the unique least-squares
solution of minimal norm of the operator equation Lf= r. This is
the extremal property that characterizes the Moore–Penrose
inverse; an equivalent algebraic definition in terms of a set of 4
equations and an equivalent function–theoretic definition,
formulas and other properties are known in the literature.

Note that L is usually a compact operator, hence L† is
unbounded if the range of L is infinite dimensional. This
indicates that slse is very sensitive to the observations in R and
instability occurs. Therefore, even for the linearized model, its
ill-posedness still exists. In the following sections, we will show
that even for the discrete linear model, its ill-posedness still
exists. For theory and applications of generalized inverses of
operators, see Nashed (1976a).

3. Brief review of the linear kernel-based BRDF model

Actually, the explicit linearization model of Eq. (3) is dif-
ficult to obtain since the nonlinear model may be only partially
described or may not lend itself to a simple description by a
single nonlinear operator. Hence, the linear operator L cannot be
expressed explicitly. We can only use some kind of approxi-
mation. The empirical kernel-based BRDF model is a special
but important case of such kind of approximation.

As the field of multiangular remote sensing advances, it is
increasingly probable that BRDF models can be inverted to
estimate the important biological or climatological parameters
of the earth surface, such as leaf area index and albedo (see
Strahler et al., 1994). For this purpose, linear kernel-based
BRDF models were developed. A linear kernel-based BRDF
model is usually described in the following form (see Roujean
et al., 1992):

fiso þ kvolðti; tv;/Þfvol þ kgeoðti; tv;/Þfgeo ¼ rðti; tv;/Þ; ð7Þ

where r is the bidirectional reflectance; kvol and kgeo are so-
called kernels, that is, known functions of illumination and
viewing geometry which respectively describe volume and
geometric scattering; ti is the zenith angle of the solar direction,
tv is the zenith angle of the view direction; ϕ is the relative
azimuth of Sun and view direction; fiso, fvol and fgeo are three
unknown parameters to be adjusted to fit observations.
Theoretically, fiso, fvol and fgeo are closely related to the biomass
such as leaf area index (LAI), Lambertian reflectance, sunlit
crown reflectance and viewing and solar angles, hence it is a
vital task to retrieve appropriate values of the three parameters.

Generally speaking, the BRDF model includes different
kernels of many types. However, it was demonstrated that the
combination of RossThick (kvol) and LiSparse (kgeo) kernels had
the best overall ability to fit BRDF measurements and to ex-
trapolate BRDF and albedo (see Hu et al., 1997; Li et al., 1999;
Wanner et al., 1995). A suitable expression for kvol was derived
by Roujean et al. (1992). A suitable expression for kgeo is the
LiSparse non-reciprocal kernel. But the LiSparse non-reciprocal
kernel cannot overcome the case when the zenith angle of view
is large. Since, in such a case, exp(x)≈1+x does not hold for
deducing the LiSparse kernel and the albedo will be negative
(see Wanner et al., 1995). To overcome this problem, research-
ers developed the reciprocal LiSparse kernel (LiSparseR),
whose kernel is denoted by ksparse. However, it was pointed
out that LiSparseR still could not completely avoid the nega-
tive values of albedo (see Li et al., 1999). So, in Li et al. (2000),
Li et al. developed the new GO kernel, that is, the LiTransit
kernel:

kTransit ¼
ksparse; BV 2;
2
B
ksparse; B N2;

(
ð8Þ

where B is the transit condition, which is defined as

B :¼ Bðti; tv;/Þ ¼ �Oðti; tv;/Þ þ sect Vi þ sect Vv:

More detailed explanation of O and t′ can be found in Wanner
et al. (1995). We will use the combination of RossThick kernel
and LiTransit kernel in the numerical tests of this paper.

4. Regularization theory and methods for parameter
retrieval

Note that the BRDF model (7) is a linear kernel-based
model, which is a special case of a finite-rank operator equation

Kx ¼ y; ð9Þ

where KaRM�N is the coefficient matrix, xaRN is the vector of
parameters to be retrieved, yaRM is the measurements. The
BRDF model parameter retrieval is of great importance, since
the inversion process is an ill-posed problem. For ease of
reading, we discuss in the following subsections the regulari-
zation theory and methods for parameter retrieval in appropriate
detail. Further, we will provide a novel method, which we
call the numerically truncated singular value decomposition
(NTSVD). This method can find a stable approximation to the
least-squares solution of minimal norm for any M-by-N linear
system.

4.1. Discrete ill-posedness

The discrete ill-posedness arises because the linear kernel-
based BRDF model is usually underdetermined if there are too
few observations or poor directional range. For example, a single
angular observation may lead to an underdetermined system
whose solution set is infinite (the null space of the operator
contains nonzero vectors) or has no solution (the rank of the
coefficient matrix is not equal to the rank of the augmented
matrix). To alleviate those difficulties, imposing a priori infor-
mation is necessary. In geophysical inversion research, there are
different ways which can be developed to impose a priori infor-
mation (seeWang, 2007). For example, (P1) the unknowns x can
be bounded. This method requires a good a priori upper bound
for x or the norm of x, which is usually hard to obtain; (P2)
applying different weights to the components of x, then solve (9)
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under the constraint of the weights; (P3) imposing historical
information on x provided that such historical information
exists; (P4) simplifying the physical model by solving an lp
norm problem, which means the unknowns x can be obtained
under the lp scale. Note that (P1)–(P3) are equivalent to solving
a constrained optimization problem. (P4) is more popular in
mathematical physics and geophysical research, since it can
search for a meaningful solution within the solution set.

In a recent work, Li et al. (2001) developed an a priori
constrained method, which is based on the eigen decomposition
of the covariance matrix Cp, where Cp is the covariance matrix
of a priori information of x. So, their method is actually (P3). It
should be pointed out that this is an already developed method
in inversion theory (see Groetsch, 1993; Tarantola, 1987) and in
geophysical research (see Rodgers, 1976). Therefore, we will
not address this issue in this paper. Instead, we will rather focus
on (P4). However, for the theory of application of (P3), we still
have to explain it in appropriate detail in Subsection 4.2. The
theory of the application of (P4) is explained in Subsections 4.3
and 4.4, the numerical consideration is also addressed in Sub-
sections 4.5 and 4.6.

4.2. Bayes statistical estimation

Bayesian statistics provides a conceptually simple process
for updating uncertainty in the light of evidence. Initial beliefs
about some unknown quantity are represented by a priori
distribution. Information in the data is expressed by the like-
lihood function L(x|y). The a prior distribution p(x) and the
likelihood function are then combined to obtain the posterior
distribution for the quantity of interest. The a posterior distri-
bution expresses our revised uncertainty in light of the data, in
other words, an organized appraisal in the consideration of
previous experience.

The role of Bayesian statistics is very similar to the role of
regularization. Now, we establish the relationship between the
Bayesian estimation and regularization. A continuous random
vector x is said to have a Gaussian distribution if its joint prob-
ability distribution function has the form

pxðx; l;CÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞNdetðCÞ

q exp � 1
2
ðx� lÞTC�1ðx� lÞ

� �
;

ð10Þ

where x; laRN ;C is an n-by-n symmetric positive definite
matrix, and det(·) denotes the matrix determinant. The mean is
given by E(x)=μ and the covariance matrix is cov(x)=C.

Suppose y=Kx+n is a Gaussian distribution with mean Kx
and covariance Cn, where Cn is the noise covariance of the
observation noise and model inaccuracy. Then by Eq. (10) we
obtain

pðyjxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞMdetðCÞ

q exp � 1
2
ðy� KxÞTC�1

n ðy� KxÞ
� �

:

ð11Þ
From Eq. (10), the prior probability distribution is given by

pðxÞ ¼ exp � 1
2 x

TC�1
x x

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞNdetðCxÞ

q : ð12Þ

By Bayesian statistical inference and the above two
equations, we obtain an a posteriori log likelihood function

LðxjyÞ ¼ logpðxjyÞ
¼ � 1

2
ðy� KxÞTC�1

n ðy� KxÞ � 1
2
xTC�1

x xþ f;
ð13Þ

where ζ is constant with respect to x. The maximum a posteriori
estimation is obtained by maximizing Eq. (13) with respect to x,

x ¼ ðKTC�1
n K þ C�1

x Þ�1KTC�1
n y: ð14Þ

The easiest way of choosing Cn and Cx is by letting

Cn ¼ r2n IM ; Cx ¼ r2x IN ;

and then Eq. (14) becomes

x ¼ ðKTK þ nIM Þ�1KTy; ð15Þ
where ξ=σn

2 /σx
2, which is the noise-to-signal ratio.

It is clear that the solution obtained by maximum a
posteriori estimation has the same form as the solution of the
Tikhonov regularization in the next subsection.

4.3. Tikhonov regularization

Inverse problems are generally ill-posed. Regularization
methods are essential for solving such problems. The theory for
regularization is established by Tikhonov and his colleagues
(see Tikhonov & Arsenin, 1977). For the discrete model (9), we
suppose y is the true right-hand side, and denote by yn the
measurements with noise. The Tikhonov regularization method
solves a regularized minimization problem

J aðxÞ ¼ jjKx� ynjj2l2 þ ajjD1=2xjj2l2Ymin ð16Þ
instead of solving

JðxÞ ¼ jjKx� ynjj2l2Ymin: ð17Þ
Here D is a weighting or smoothing operator, and α is a positive
number (to be chosen). By a variational process, the solution of
Eq. (16) satisfies

K⁎Kxþ aDx ¼ K⁎yn; ð18Þ

whereK⁎ is the adjoint ofK. Under suitable assumption onD, Eq.
(18) has a unique solution which can be written as

x ¼ ðK⁎K þ aDÞ�1K⁎yn: ð19Þ
It is clear that the scale operatorD can be considered as some kind
of a priori information. Now, it is not difficult to notice that the
formula (15) by Bayesian estimation has the same form as in
Tikhonov regularization (19). But the investigation of choosingD
and α for kernel-based land surface parameter retrieval problem
deserves further study.
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4.4. Regularization by numerically truncated singular value
decomposition (NTSVD)

Instead of Tikhonov regularization, our goal in this sub-
section is to solve an equality constrained l2 problem

jjxjjl2Yminimization;

subject to K̃x ¼ yn;
ð20Þ

where yn=y+n K̃aRM�N is a perturbation of K (i.e., if we
regard K as accurate operator, then K̃ is an approximation to K
which may contain error or noise), xaRN ; n; ynaRM :

In Pokrovsky and Roujean (2002) the authors suggested to
use the singular value decomposition for solving ill-conditioned
linear system Ax=b, but no strict interpretation is given in their
paper. As is mentioned in Section 2, the ill-posedness is largely
due to the small singular values of the linear operator. Let us
write the singular value decomposition of K̃ as

K̃ ¼ UM�NRN�NV
T
N�N ¼

XN
i¼1

riuiυT
i ;

where both U=[ui] and V=[υi] are orthonormal matrices, that
is, the products of U with its transpose and V with its transpose
are both identity matrices; Σ is a diagonal matrix whose non-
zero entries consist of the singular values of K̃. The traditional
least-squares error (LSE) solution xlse of the constrained optimi-
zation system (20) can be expressed by the singular values and
singular vectors in the form

xlse ¼
XN
i¼1

1
ri
ðuTi ynÞυi: ð21Þ

If the rank of K̃ is p≤min{M,N}, then the above solution form
inevitably encounters numerical difficulties, since the de-
nominator contains numerically infinitesimal values. Therefore,
to solve the problem by the SVD, we must impose a priori
information. As we have noted, Tikhonov regularization is a
kind of (P4) for incorporating a priori information to the solu-
tion. In this subsection, we consider another way of incorporat-
ing a priori information to the solution. The idea is quite simple:
instead of filtering the small singular values by replacing the
small singular values with small positive numbers, we just make
a truncation of the summation, that is, the terms containing small
singular values are replaced by zeroes. In this way, we obtain a
regularized solution of the least-squares problem (20) of mini-
mal norm

xtrunclse ¼
Xp
i¼1

1
ri
ðuTi ynÞυi: ð22Þ

and

min
x

jjK̃x� ynjj2l2 ¼
X

i¼pþ1; N

juTi ynj2 ð23Þ

We wish to examine the truncated singular value decompo-
sition more. Note that in practice, K̃ may not be exactly rank
deficient, but instead be numerically rank deficient, that is, it
has one or more small but nonzero singular values such that
pδb rank(K̃). It is clear from Eq. (22) that the small singular
values inevitably give rise to difficulties. The regularization
technique for SVD means some of the small singular values are
truncated when in computation, and is hence is called the
numerically truncated singular value decomposition (NTSVD).
Now assume that K is corrupted by the error matrix Bδ. Then,
we replace K by a matrix Kp̃ that is close to K and mathe-
matically rank deficient. Our choice of Kp̃ is obtained by
replacing the small nonzero singular values σp̃+1, σp̃+2,⋯ with
exact zeros, that is,

Kp̃ ¼
X̃p
i¼1

riuiυT
i ð24Þ

where p̃ is usually chosen as pδ. We call Eq. (24) the numerically
truncated singular value decomposition of K. Now, we use
Eq. (24) as the linear kernel to compute the least-squares solu-
tions. Actually, we solve the problem

min
x

jjKp̃x� ynjjl2 ; ð25Þ

and obtain the approximate solution xlse
NTSVD of the minimal-

norm

xNTSVDlse ¼ K
ỹ
p yn ¼

X̃p
i¼1

1
ri
ðuTi ynÞυi; ð26Þ

where Kp̃
† denotes the Moore–Penrose generalized inverse.

Let us explain in more details the NTSVD for the under-
determined linear system. In this case, the number of indepen-
dent variables is more than the number of observations, that is,
MbN. Assume that the δ-rank of K̃ is p̃≤min{M,N}. It is easy
to augment K̃ to be an N×N square matrix K̃aug by padding
zeros underneath its M nonzero rows. Similarly, we can
augment the right-hand side vector yn with zeros. The singular
decomposition of K̃ can be rewritten as

K̃aug ¼ URVT

with

U ¼ ½u1u2 N uN �N�N ; V ¼ ½υ1υ2 N ;υn�N�N ;

R ¼

r1 0 0 N 0 0 0 0
0 r2 0 N 0 0 0 0
v v v ⋱ v v v v
0 0 0 N rp̃ N 0 0
0 0 0 N 0 ⋱ 0 0
v v v N v v v v
0 0 0 N 0 0 0 0

2
666666664

3
777777775
N�N

:

From this decomposition, we find that there are N− p̃ theoretical
zero singular values of the diagonal matrix Σ. These N− p̃ zero
singular values will inevitably induce high numerical instability.

Generally speaking, we truncate the terms that correspond to
zero singular values or “very small” singular values; this re-
quires specifying a threshold for “smallness”. But how small is
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small? This is determined by an optimal compromise between
accuracy and stability. This can be determined a priori if we
know an upper bound of the error or noise level in the data
vector and a theoretical estimate of the truncation error in the
absence of noise. Otherwise, it can be determined a posteriori
by imposing an a priori cut-off threshold and experimenting to
achieve the above rule of compromise by modifying the
threshold. In this paper, the threshold value is 1.0e−5, i.e., if the
singular values are less than 1.0e−5, we consider they should
be truncated.

4.5. Regularized kernel-based BRDF model inversion by NTSVD

In this subsection, we apply the previously developed
NTSVD method for solving the kernel-based BRDF parameter
retrieval problem. Consider the linear combination of three
kernels kgeo, kvol and the isotropic kernel

f̂iso þ f̂geokgeoðti; tv;/Þ þ f̂volkvolðti; tv;/Þ ¼ r̂

for each observation. The main difficulty in retrieving the land
surface parameters is the instability, because even arbitrarily
small noise components in the measured quantities can give
rise to extremely large spurious oscillations in the solution.
Therefore, a priori information or numerical smoothing
techniques must be included. Considering the technique (P4),
we solve the following constrained optimization problem

minjj½ f̂iso; f̂geo; f̂vol�T jjl2 ;
subject to f̂iso þ f̂geokgeo þ f̂volkvol ¼ R̂:

ð27Þ

First, if the number of observations is sufficient, we know
from the statements of the former subsection that the NTSVD
works effectively, since we can use the economy size decom-
position, that is, we only compute the first p̃ columns of U and
Σ is p̃-by-p̃.

As noted before, an insufficient number of observations may
lead to an underdetermined system which has infinitely many
solutions. Without a priori information, solving the linear sys-
tem is quite difficult and is not useful in practice. Now the
problem is how to choose an appropriate solution which satisfies
our purpose. In geophysical studies, such a priori is commonly
adopted, i.e., a system is stable with its parameters if the
retrieved parameters' energy approaches its minimum value.

Let us just consider an extreme example for kernel-based
BRDF model: that is, if only a single observation is available at
one time, we then have

f̂iso þ f̂geokgeoðti; tv;/Þ þ f̂volkvolðti; tv;/Þ ¼ r̂:

It is clear that the above equation has infinitely many
solutions. If we denote

K ¼ ½1 kgeoðti; tv;/Þ kvolðti; tv;/Þ�1�3;

then the singular decomposition of the zero augmented matrix
Kaug leads to

Kaug ¼ U3�3R3�3V
T
3�3
with

U ¼ ½u1 u2 u3�;R ¼
r1 0 0
0 r2 0
0 0 r3

2
4

3
5;V ¼ ½υ1 υ2 υ3�;

where each ui, vi, i=1, 2, 3, are the 3-by-1 columns. Our a priori
information is based on searching for a minimal norm solution
within the infinite set of solutions, that is, the solution f ⁎=[ f̂ iso⁎ ,
f̂ geo⁎ , f̂ vol⁎ ]T satisfies f̂ iso⁎ + f̂ geo⁎ kgeo(ti,tv,ϕ)+ f̂ vol⁎ kvolkvol(ti,tv,ϕ)= r̂
and at the same time ||f ⁎||→minimum.

We find that there are two theoretical zero singular values σ2

and σ3 of Σ. From Eq. (34) of Section 5, we know that the noise
will be significantly propagated due to jdj

minfrigi Yl, where δ is
the noise level. So, if we would like to find the parameters from
such a single observation, the NTSVD helps us a great deal,
since we only require a truncation level. Here, it is clear that the
truncation level p̂ =1. The contribution of the singular vectors
of V is V(:,1), that is, the first column of V. Also, we find that the
noise propagation is suppressed significantly since the small
singular values are truncated in computation. Therefore, we call
the NTSVD a kind of regularization for solving kernel-based
BRDF model problem.

4.6. Further discussion

To alleviate the ill-posedness of the kernel-based system,
regularization is a vital technique. Note that the discrete ill-
posedness is induced by ill-conditioned systems and inexact
observations, therefore, proper regularization plays a major role.
Sections 4.2, 4.3, and 4.4 discuss three different regularization
techniques: Section 4.2 describes utilizing the history data to
scale the kernel K, which is equivalent to a preconditioning
technique; Section 4.3 describes utilizing the scaling operator to
improve the condition of the kernel K; Section 4.4 describes
filtering the small singular values by minimizing an energy
induced by l2 norm, which is called NTSVD. Note that NTSVD
is applicable for the kernel-based system for any order, hence it
is more adaptive, that is, it can solve problems with insufficient
observations and sufficient observations simultaneously.

Finally we want to point out that for the solution of BRDF
inversion model with sufficient observations, a large amount of
methods can be employed. For the direct methods, we can try
LU decomposition, QR decomposition and so forth; for the
iterative methods, we can try Jacobi method, Gauss–Seidel
method, conjugate gradient method and so forth. All of the
methods would yield similar retrieval results.

We conclude this section with some mathematical comments.

(i) The vector L†y is the minimal-norm least-squares solution
of the operator equation Lx=y. It is the orthogonal
projection of the set of all least-squares solutions on the
orthogonal complement of the null space of the adjoint
operator L⁎. Equivalently, it is the unique least-squares
solution that lies in this orthogonal complement.

(ii) The numerically truncated singular value decomposition
is the orthogonal projection of the minimal-norm least-
squares solution on the subspace spanned by the singular
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vectors that are not truncated in the expansion. Because of
the orthonormal system of singular vectors used through-
out, trying to increase the accuracy by adding another
term in the singular value decomposition does not require
changing all the computation, in contrast for example to
Gaussian elimination. This enables one to experiment to
obtain an a posteriori cut-off threshold that may provide
a more optimal compromise between accuracy and
stability.

(iii) A linear operatorM is called an outer inverse of the linear
operator L if MLM=M. Let Ty denote a numerically
truncated singular value decomposition of L†y. It is not
hard to show that T is an outer inverse of L (see Nashed,
1987a,b). Any outer inverse provides an approximate
solution of Lx=y. There are large classes of selected outer
inverses that provide stable approximate solutions. For
the operator theory of outer inverses and their role in
stable approximation and regularization of ill-posed
problems, see Nashed (1987b,a).

5. Error propagation for kernel-based linear system

As is well-known, the kernel-based model is a semi-
empirical model. Therefore, in applications, the model (9)
should include various noise. For simplicity, we assume that the
noise is additive and denoted it by n, hence we obtain

Kx ¼ yn; ð28Þ
where yn=y+n. More generally, the kernels kvol and kgeo are
also obtained approximately, so instead of K we would have a
perturbed version of the kernel K˜, in this case, the model (9)
should be rewritten in the form

K̃x ¼ yn: ð29Þ
Note that, with the a priori information or by multiangular
observations, most of the time Eq. (29) is overdetermined,
therefore we can only find a least-squares solution or
equivalently a solution of the normal equations, that is,

K̃T K̃xlse � K̃Tyn ¼ 0: ð30Þ
or

xlse ¼ ðK̃T K̃ÞyK̃Tyn: ð31Þ
Clearly, the numerical condition of the normal equations is
much worse than that of the original problem since

condðK̃T K̃ÞNNcondðK̃Þ:
We assume that the error and noise propagation depends

mainly on the spectrum distribution of the discrete kernel K̃.
To ease the analysis, we assume Eq. (29) can be written in the
form

ðK þ dBÞxðdÞ ¼ yþ dz; ð32Þ
where δ is the error level, B is the perturbed matrix, which is
in the same size as K; and z is the perturbed vector, which
is in the same size as y. It is clear that x(δ)=x if δ=0,
that is, no error/noise is imposed. So we assume the initial
condition

xð0Þ ¼ x:

Assuming that K is a full collum rank matrix, then it is clear that
x(δ) is differentiable in a neighborhood of 0 and

d
dd

xðdÞjd¼0 ¼ ðKTKÞ�1KT ðz� BxÞ:

By the Taylor expansion of x(δ), we have

xðdÞ ¼ xþ dxVð0Þ þ Oðd2Þ:
This leads to the error estimate

jjxðdÞ � xjj
jjxjj ¼ jdjjjðKTKÞ�1KT jj jjzjj

jjxjj þ jjBjj
� �

þ Oðd2Þ:

ð33Þ
The above error estimate indicates that the error propagation
of the solution is governed by the error level δ, the norm of
(KTK)−1KT and the norms of the perturbation matrix B and the
perturbation vector z.

Now if the singular system of K is known as {σk;uk,υk}, then
the error/noise propagation can be expressed as

jjxðdÞ � xjj
jjxjj ¼ jdj

minfrkgk
jjzjj
jjxjj þ jjBjj

� �
þ Oðd2Þ: ð34Þ

Note that the norm of each of x, z and B can be bounded, the
error level δ is in (0,1), so the major contribution of the error/
noise propagation is governed by the ratio jdj

minfrigk , the smallest
singular values. For the case when K is not a full column-rank
matrix or a linear operator with nonzero nullspace, the pertur-
bation analysis is more delicate, but a suitable error propaga-
tion analysis can be carried out. See Nashed (1976b).

Remark. In practice, random uncertainty in the reflectances
sampled translates into uncertainty in the BRDF and albedo. We
note that noise inflation depends on the sampling geometry
alone. For example, for MODIS and MISR sampling, they vary
with latitude and time of year; but for kernel-based models, they
do not depend on wavelength or the type of BRDF viewed. The
above formula indicates that the random noise in the
observation (BRDF) and the smallest singular values control
the error propagation. From the algebraic point of view, we have
the idea that, the regularization methods developed in former
sections just suppress the large ratio jdj

minfrigi by filtering the
small singular values σk. After noticing this fact, the uncertainty
due to this factor can be avoided.

6. Numerical performance

6.1. Preliminaries

In Section 4.4, we demonstrated that our proposed method is
applicable to BRDF kernel-based systems of any order.



Table 1
Summary of the data sets used

Data Cover type LAI

ranson soy.827 Soy 2.9
kimes.orchgrass Orchard grass 1
Parabola.1994.asp-ifc2 Aspen 5.5

Fig. 1. Comparison of the true reflectance (marked with ⁎) with the estimated
reflectance (marked with “o”) for data from Kimes orchgrass–VisRed band.
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If there are M different measurement kernel-based models,
then Eq. (9) can be rewritten in the matrix–vector form

KX
Y ¼ Y

Y
; ð35Þ

where

K ¼
1 kgeoð1Þ kvolð1Þ
1 kgeoð2Þ kvolð2Þ
v v v
1 kgeoðMÞ kvolðMÞ

2
664

3
775;

X
Y ¼

fiso
fgeo
fvol

2
4

3
5; Y

Y ¼
y1
y2
v
yM

2
664

3
775:

In practice, the matrix K cannot be determined accurately,
instead a perturbed version K̃ is obtained. The vector Y

Y
should

contain different kinds of noise. Here, for simplicity, we assume
that the noise is additive, and is mainly the Gaussian random
noise n

Y
, that is, we have

K̃X
Y ¼ Y

Y
d :¼ Y

Yþd nY

and K̃ :¼ Kþ dB, where δ is the noise level in (0,1) and B is
the perturbed matrix. In our tests, we assume that B is a
Gaussian random matrix. We also assume that

jj YYd � Y
Y jj V sd b jj YYd jj; ð36Þ

where τN1. This assumption indicates that the signal-to-noise
ratio (SNR) should be greater than 1; otherwise we consider that
the observations (BRDF) are not believable. It is clear that
Eq. (35) is an underdetermined system if M≤2 and an over-
determined system ifMN3. For both cases, the NTSVD method
can find stable approximations to the least-squares solution of
minimal norm.

Note that for satellite remote sensing, because of the
restrictions in view and illumination geometries, it is difficult
to make the inverse of K̃T K̃ be bounded (see Gao et al., 1998).
However, if we use the method developed in Section 4.4, the
difficulties can be easily solved. We only need a truncation
threshold.

In the following, we demonstrate several numerical tests for
computing the land surface parameters by using the field ob-
served data in Table 1 andMODIS satellite data. To demonstrate
the feasibility of our algorithm, we need to show the algorithm
performs well for kernel-based multiangular systems. We first
apply NTSVD to field-observed multiangular remote sensing
data, where some components of the measured data are abnor-
mal. Then, we apply NTSVD to MODIS satellite data, where
only one observation is provided.

6.2. Tests on field data: multiangular remote sensing

First, we demonstrate several numerical tests for computing
the land surface parameters. We use the widely used 73 data sets
cited in Li et al. (2001). Among the 73 sets of BRDF mea-
surements, only 18 sets of field-measured BRDF data with
detailed information about the experiment are chosen, including
biophysical and instrumental information (see Deering et al.,
1992, 1994, 1995; Eck & Deering, 1992; Hu et al., 1997; Kimes
et al., 1985, 1986). Table 1 summarizes the basic properties of
the data sets used. The list of papers from which those data and
instrument information were collected can be found in Zhao
et al. (2004). These data sets cover a large variety of vegetative
cover types, and are fairly well representative of the natural
and cultivated vegetation. For these nicely chosen data, we
assume that the perturbation is small, hence a small error level
δ=1.0e−6 is used. For the chosen field data, the observations
are sufficient. Hence the problem is well-posed. For well-posed
problems, the singular value decomposition method and least-
square error method yield the same retrievals.

In the following, we make a comparison between the true
land surface reflectance (Rtrue) and the estimated surface
reflectance (Restimate) for multiangular data using our method.
The true surface reflectance refers to the measured BRDF. To be
significant, we compare the reflectance in the principal planes.
We plot the results for different land surface cover types in the
following figures. In all of the figures, the symbols “⁎” and “o”
mark the corresponding observations at the different VZAs for
the true (measured) and retrieved reflectance respectively. The
“⁎” mark and “o” mark are connected by solid line and dotted
line respectively. We only choose some typical figures to
demonstrate the efficiency of our algorithm. Figs. 1 and 2 give a
plot of the comparison for Kimes' data. Figs. 3 and 4 give a plot
of the comparison for Ranson's data. Figs. 5 and 6 give a plot of



Fig. 2. Comparison of the true reflectance (marked with ⁎) with the estimated
reflectance (marked with “o”) for data from Kimes orchgrass–Nir band.

Fig. 4. Comparison of the true reflectance (marked with ⁎) with the estimated
reflectance (marked with “o”) for data from Ranson soy 827–Nir band.
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the comparison for Parabola's data. In each group, we choose
both the visible band and Nir band. From these figures, we find
that our algorithm is stable for multiangular BRDF inversion.
More significantly, we find that even if some of the observations
oscillate severely, our method can still find a nearly smooth
solution. In Fig. 1, the measured reflectance and the computed
one coincide with each other very well, except with the re-
flectance measured with VZA being 75 degrees. By retracing
the measured data sets, we find the measured value is 0.0044,
abnormally small, which can be obviously seen, compared with
other neighboring measured reflectance from the figure. The
reason for the exception may lie in that VZA is so large that the
sensor at this angle (75 degree) cannot be well controlled to
receive signals of the vegetation canopies as it was required to
do. And in this situation, the signals usually include the sky's
information or other unknown objects. In contrast to the mea-
sured reflectance, the computed one approximates very good.
Its curve is with a shape of a nearly perfect “bowl”. This
Fig. 3. Comparison of the true reflectance (marked with ★) with the estimated
reflectance (marked with “o”) for data from Ranson soy 827–VisRed band.
phenomenon is identical to many aggregates of field BRDF
measured results. Similar exceptional cases can be found in
Figs. 5 and 6, though the reasons of abnormal measurement
values can be different. Thus, we say the retrievals by our
method are very consistent.

In Table 2 we summarize the results for fitting errors: root
mean-square error (rmse), errall, erreach, errabnormal and errnormal

and for finding abnormal values if errabnormalN rmse or
errall∼errabnormal, here “∼” means the values are basically of
the same magnitude. They are defined as

rmse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
i¼1

ðRtrueð:Þ � Restimateð:ÞÞ2
L

s
;

errall ¼ jjRtrue � Restimatejj;
erreach ¼ jRtrueð:Þ � Restimateð:Þj;
where L is the length of measurements Rtrue, Rtrue(:) and Restimate

(:) mean that the operation is for each value of Rtrue and Restimate.
Fig. 5. Comparison of the true reflectance (marked with ★) with the estimated
reflectance (marked with “o”) for data from Parabola asp ifc2–VisRed band.



Fig. 6. Comparison of the true reflectance (marked with ★) with the estimated
reflectance (marked with “o”) for data from Parabola asp ifc2–Nir band.

Table 3
Comparison of computational values of the WSAs from data sets Table 1 for
single observation, two observations with the true WSAs values (multiangular
observations) for VisRed band

Methods Single
observation

Two
observations

True WSAs

ranson_soy.827 SVD 0.2069430 0.0192341 0.0405936
NTSVD 0.0449047 0.0442712
Tikh1 −0.0008615 0.0372853
Tikh2 0.0638937 0.0386419

kimes.orchgrass SVD −1.4576056 0.1892960 0.0783379
NTSVD 0.1082957 0.1058740
Tikh1 0.0017130 0.0253326
Tikh2 0.0397185 0.0860485

Parabola.1994.asp-ifc2 SVD −0.4641555 0.2750041 0.0227972
NTSVD 0.0364620 0.0389198
Tikh1 −0.0005934 −0.0005934
Tikh2 0.0447834 −0.0040831

Table 4
Comparison of computational values of the WSAs from the data sets Table 1 for
single observation, two observations with the true WSAs values (multiangular
observations) for Nir band

Methods Single
observation

Two
observations

True WSAs

ranson_soy.827 SVD 2.0598883 0.3003101 0.3653728
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The values errabnormal and errnormal are abnormal values and
normal values recorded respectively in erreach. For Parabola.1994
asp-ifc2, the abnormal values do not include one when VZA=
−60 degrees, for which, the values are 0.0156077 and 0.1628207
for red and Nir bands respectively. These results indicate that our
algorithm is stable for BRDF model inversion.

We see from the theoretical analysis and numerical
performance that our inversion-simulation process is physically
meaningful: as is known, the physical process of the land
surface reflectance is always continuous, so if the observation
process is continuous (actually not, due to limitations of devices
and observations), the actual reflectance of a particular type of
land cover should be continuous and smooth. So, from the
results of our numerical experiments, we conclude that the
retrieved land surface reflectance by our method is meaningful
and believable.

6.3. Tests on ill-posed situations

With the nice field data, the numerical experiment can also
be done to test the robustness of the algorithm by using a limited
number of observations, and then to compare the retrieval with
the measurements. The ill-posed situations are generated by
significantly reducing the number of observations from the field
data in Table 1.

In this test, we choose one or two observations as limited
number of observations and compare the retrieval results by
Table 2
Fitting errors for different data sets in Red band and Nir band

Bands errall rmse errabnormal errnormal

Kimes.orchgrass Red 0.0669179 0.0201765 0.0653017 b0.008
Kimes.orchgrass Nir 0.1661298 0.0500900 0.1421012 b0.052
ranson_soy.827 Red 0.0072853 0.0019471 N/A b0.004
ranson_soy.827 Nir 0.0370849 0.0099114 N/A b0.016
Parabola.1994.asp-ifc2 Red 0.0260724 0.0067319 0.0162337 b0.010
Parabola.1994.asp-ifc2 Nir 0.4115760 0.1062685 0.3359297 b0.081
standard LSE method with the Tikhonov regularization, SVD
without truncation and NTSVD.

For the Tikhonov regularization, we note that the choice of
regularization parameter α is crucial. The meaningful value of α
should be in (0,1). In theory, α should approach zero. But in
reality, α can neither be too large nor be too small. A larger α
yields a well-posed problem but the solution is far away from
the true value. Whereas a smaller α yields a better approxima-
tion, but with large instabilities. In this test, we first choose
α=0.01, then we choose α=δ2. We choose the weighting or
smoothing operator D as the nonnegative matrix obtained from
the finite-difference discretization of the Laplacian:

D ¼

1 �1 0 N 0 0
�1 2 �1 N 0 0
v v v N v v
0 0 0 �1 2 �1
0 0 0 N �1 1

2
66664

3
77775:

This choice of smoothing penalty term is widely used in
regularization of ill-posed problems, e.g. in Wang (2007).
NTSVD 0.4469763 0.4348320
Tikh1 −0.0085748 0.4163772
Tikh2 0.6359822 0.4195730

kimes.orchgrass SVD −5.2360234 0.5927810 0.2963261
NTSVD 0.3890207 0.37216767
Tikh1 0.0088364 0.1175001
Tikh2 0.2048903 0.2945934

Parabola.1994.asp-ifc2 SVD −7.0233198 3.0051937 0.4240376
NTSVD 0.5517209 0.5741842
Tikh1 −0.0089786 −0.0089786
Tikh2 0.6776356 −0.0617838



Fig. 8. White-sky albedo retrieved by NTSVD for band 1 of MOD021KM.
A2001137.
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Comparison results are given in Tables 3 and 4. We do not
list all of the results since the data sets can be used to generate an
enormous number of such kind of ill-posed situations. Since
LSE does not work when the number of observations is less
than 3, hence no retrievals obtained. In the two tables, these
methods are denoted by Tikh1 (for α=0.01), Tikh2 (for α=δ2),
SVD (singular value decomposition without truncation) and
NTSVD. The true white sky albedo (WSA) is calculated from
well-posed situations, i.e., full data. If we regard WSAN1 or
WSAb0 as failed inversion, then it is clear that there are several
failed inversion cases for SVD, Tikh1 and Tikh2. It follows
from the current experiments that NTSVD performs better than
the standard Tikhonov regularization and SVD without
truncation. We also find that the performance of Tikh2 is better
than that of Tikh1. Therefore, there still leaves enough space for
studying the Tikhonov regularization for ill-posed land surface
parameter retrievals.

6.4. Tests on satellite data: insufficient observation from
MODIS

We use atmospherically corrected moderate resolution
imaging spectroradiometer (MODIS) 1B product acquired on
a single day as an example of single observation BRDF at
certain viewing direction. Each pixel has different view zenith
angle and relative azimuth angle. The data MOD021KM.
A2001135-150 with horizontal tile number (27) and vertical tile
number (5) were measured covers Shunyi county of Beijing,
China. The three parameters are retrieved by using this 1B
product. Fig. 7 plots the reflectance for band 1 of a certain day
DOY=137. In MODIS AMBRALS algorithm, when insuffi-
cient reflectances or a poorly representative sampling of high
quality reflectances are available for a full inversion, a database
of archetypal BRDF parameters is used to supplement the data
and a magnitude inversion is performed (see Strahler et al.,
1999; Verstraete et al., 1996). However we note that the stan-
dard MODIS AMBRALS algorithm cannot work for such an
extreme case, even for MODIS magnitude inversion since it is
hard to obtain seasonal data associated with a dynamic land
Fig. 7. Reflectance for band 1 of MOD021KM.A2001137.
cover in a particular site. But our method still works for such an
extreme case. Due to limitations of the observation, there are
black pixels with low energy in the retrieved albedo. Note that
the albedo is the integration of the BRDF over all directions,
therefore, there should be a similarity between the BRDF and
the albedo. So, for low energy pixels of the albedo, we use a
polynomial fitting from BRDF to obtain the corresponding
albedo. Then, the white-sky albedo (WSA) retrieved by
NTSVD for band 1 of one observation (DOY=137) is plotted
in Fig. 8. We see from Fig. 8 that the albedo retrieved from
insufficient observations can generate the general profile.
Though the results are not perfect, most of the details are
preserved.

6.5. Discussion of the numerical results

From our computational results on different data sets, we
find that the retrieved results by NTSVD for multiangular
remote sensing, no matter whether it is an overdetermined case
or an underdetermined case, are meaningful.

We also conclude that though the multiangular observations
data bring much more information in practice, and are more
feasible for model inversion, if such data are unavailable, it is
worth trying the proposed method NTSVD in this paper, since it
subtly uses the a priori information by minimization of the
energy induced by l2 norm.

We also note that we do not suggest discarding the useful
history information (e.g., data that is not too old) and the multi-
angular data. Instead, we should fully employ such information
if it is available. The key to why our algorithm outperforms
previous algorithms is that our algorithm is adaptive, which
solves kernel-based BRDF model of any order, which may be a
supplement for BRDF/albedo retrieval product.

The multiangular observations are obtained by aggregating
daily observations over a certain time period for non-multiangle
satellite instruments, assuming the reflectivity of land surface is
stable during this time period. Problem arises when land surface
goes through rapid change, such as vegetation in active growing
season. Hence robust algorithms to estimate BRDF and albedos
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in such cases are highly desired. Our algorithm is a proper
choice, since it can retrieve the BRDF parameters with
reasonable accuracy using only one directional observation of
surface reflectance.

Moreover, for some sensors with high spatial resolution, the
quasi multiangular data are difficult to obtain. This is why there
are not high resolution albedo products. But with our algorithm,
we could still achieve retrieval results, though they are not quite
satisfactory.

7. Concluding remarks

A limited or insufficient number of observations is one of the
most severe problems for the estimation of BRDF. Therefore,
new techniques for robust estimation of the BRDF model
parameters in the presence of scarcity of the number of obser-
vations are desirable. We have proposed a numerically truncated
singular value decomposition method for the solution of the
linear kernel-based model for BRDF inversion, which is robust
and adaptive. Our method is different from former methods in
the following manners:

(1) Previous methods, such as AMBRALS and QR decom-
position, require that the kernel-based system be overde-
termined; our method does not need such a restriction;

(2) Previous methods, which utilize the a priori information,
are based on the statistical covariance of the history data;
our a priori information is based on the minimization of
the energy induced by l2 norm of the parameters;

(3) Previous methods are not adaptive, which are only suited
for kernel-based overdetermined linear systems; Our
method is adaptive, which is suitable for kernel-based
linear systems of any order;

(4) Moreover, our method is also applicable for inverse
problems in other disciplinary subjects.

Hence, our algorithm can be considered as a supplement to
BRDF/albedo algorithms.

From numerical performance, we conclude that this method
is suitable for solving multiangular land surface parameter
retrieval problems. Actually, it is well known that truncated
singular value expansion for the solution of the first kind oper-
ator equation is already a kind of regularization (see Groetsch,
1993; Xiao et al., 2003). Generally speaking, the regularization
involves a penalized term or regularized term to the least-
squares problem, that is, instead of minimizing

JðxÞ ¼ jjKx� ynjj2; ð37Þ
we minimize a new functional

J aðxÞ ¼ jjKx� ynjj2 þ ajjD1=2xjj2; ð38Þ
which is equivalent to solving

K⁎Kxþ aDx ¼ K⁎yn; ð39Þ
where D is a scale operator, for instance D can be a discrete
differential operator, α is the so-called regularization parameter.
If D is the identity, then the above new functional is essentially
equivalent to applying the filter function uaðrÞ ¼ r2

aþr2 to the
LSE solution of Eq. (37).

The truncated singular value decomposition is a special
regularization if we choose the filter function as

uaðrÞ ¼ 1; if r2za;
0; otherwise

�

and apply it to the LSE solution. Such a choice means that the
small singular values are truncated if some chosen rules are
satisfied.

8. Future research

In future research, we will study the comparison between the
MODIS magnitude inversion results with the NTSVD method.
We will also study the numerical realization methods for the
retrieval of land surface albedos for high spatial and temporal
resolution sensors, since the multiangular data are obtained with
great difficulty due to their long period of observing the same
area. In addition, as we have pointed out in Section 4.3 that, the
application of the Tikhonov regularization deserves further
studying. In particular, an interactive choice of the weighting
operator D and a posteriori choice of the regularization param-
eter in inversion models using remote sensing data will be
explored.

The role of “outer inverses” of linear operators, briefly
mentioned in at the end of Section 4.6, will be explored for
kernel-based BRDF model and other kernel-based models (both
linear and nonlinear). Mathematically and computationally,
adaptive constructs of outer inverses have been effectively used
for developing and establishing convergence of Newton-like
methods for singular smooth and nonsmooth operator equations
(see references Chen et al., 1997; Nashed & Chen, 1993).
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Appendix A. Singular value decomposition of a linear
operator

Let K be a compact linear operator from a Hilbert space H1

into a Hilbert space H2. Recall that a linear operator is said be
compact if for each bounded set B in H1, the closure of image
set K(B) is compact, i.e., if every sequence in K(B) has a
subsequence which converges in H2. Thus a compact operator
maps each bounded set onto a “nicer” set. A linear integral
operator of the form ðKf ÞðtÞ ¼ R b

a kðt; sÞf ðsÞds, where k(t,s) is a
given kernel with appropriate smooth properties, is a compact
operator on most of the function spaces used in applications.
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Integral equations of the first kind Kf=g involving this integral
operator, is a prototype of many ill-posed problems that arise in
applications, including models of indirect measurements,
remote sensing and geophysics (see, e.g., Groetsch, 1993;
Nashed, 1976a; Wing, 1992). The singular value decomposition
of the operator K is based on consideration of the spectrums of
K⁎K and KK⁎, where K⁎ is the adjoint of K. It is easy to show
that these two operators have the same eigenvalues and that the
eigenvalues are nonnegative. These operators are compact and
self-adjoint and it is known that they have a sequence of
orthonormal eigenvectors. Let the positive eigenvalues of K⁎K
be listed in a decreasing order λ1≥λ2≥⋯ and let u1, u2,⋯ be a
sequence of associated orthornormal eigenvectors. Let σk be the
square root of a nonzero eigenvalue of K⁎K and υk=1 /σkKuk.
Then K⁎υk=σkuk and Kuk=σkυk. Moreover, vk is an eigenvector
of KK⁎ belonging to the eigenvalue λk. The set orthonormal
eigenvectors of KK⁎ forms a basis for the orthogonal com-
plement of the nullspace of K⁎. The system {σk;uk,υk} is called
a singular system of the operator K and the numbers σk

are called singular values. Now we have the singular value
expansions

Kf ¼
Xl
k¼1

rkðf ; ukÞυk ;

K⁎g ¼
Xl
k¼1

rkðg;υkÞuk ;

Kyg ¼
Xl
k¼1

r�1
k ðg;υkÞuk :

Appendix B. Singular value decomposition of a matrix

B.1. Singular value decomposition (SVD)

Any m×n matrix Awhose number of rows m is greater than
its number of columns n, can be written as the product of an
m×n column-orthonormal matrix U, an n×n diagonal matrix
Σ with non-negative elements in decreasing order down the
diagonal, and the transpose of an n×n orthonormal matrix V
(see Press et al., 1986):

½A�m�n ¼ ½U �m�nd

r1
r2

⋱
rn

2
664

3
775
n�n

d ½VT �n�n:

The columns of V, known as the right singular vectors of A, are an
orthonormal set of eigenvectors for ATA; and the columns of U,
known as the left singular vectors of A, are an orthonormal set of
eigenvectors for AAT. The singular values (σi's, i=1, 2,⋯, n)
corresponding to the columns of V are the non-negative square
root of the eigenvalues of ATA.

The columns of V form an orthonormal set of vectors which
span the space orthogonal to the null space of A, and the
columns of U form an orthonormal set of vectors which span
the range of A. For our application, each column of A is linearly
independent. Therefore, if mNn then A is full rank and its null
space consists of the zero vector, so in this case the columns of
V span ℝn.

When the number of unknowns n is greater than the number
of the observations m, there will be n−m dimensional family of
solutions. However, with the singular value decomposition, the
job of finding the minimal norm solution can be easily done.
The procedure is the same as the above.

B.2. Truncated SVD (TSVD)

When solving the linear algebra equation

Ax ¼ b; ðB:1Þ
where A is an m×n matrix, the direct inversion should be
avoided considering the ill-conditioning of the matrix itself.
Instead, the truncated singular value decomposition (TSVD) is a
suitable technique. Let us denote the column vectors of V as vi,
the column vectors of U as ui, then by Section B.1,

Avi ¼ riui; ATui ¼ riυi

and

uTi uj ¼ dij; υT
i υj ¼ dij; dij ¼ 1; if i ¼ j;

0; else:

�

It can be easily seen that the solution of Eq. (B.1) by SVD is

x ¼ V diagðr�1
i ÞUTb ¼

Xn
i¼1

r�1
i ðuTi bÞυi: ðB:2Þ

However, instability occurs for small singular values σi. This
would be awful for the right-hand side b containing noise.

Truncated SVD means the solution of Eq. (B.1) is
approximated by (see Wang, 2007)

xappr ¼
X
r2i Na

uaðr2i Þr�1
i ðuTi bÞυi; ðB:3Þ

where φα(σ
2) is a filter function given by

uaðr2Þ ¼ 1; if r2Na
0; if r2Va;

�
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