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[1] In this paper, we consider the problem how to solve the kernel-based bidirectional
reflectance distribution function (BRDF) models for the retrieval of land surface albedos.
The above problem is an ill-posed inverse problem. We will employ a new
regularization technique to alleviate the ill-posedness. The Tikhonov regularization has
been discussed for BRDF model inversion, however, much study has to be done before
applying it in practice (Wang et al., 2007). In this paper, we thoroughly investigate
this method, and propose a discrepancy method for a posteriori choice of the
regularization parameter and several options for choosing the regularizing stabilizer. The
proposed method can alleviate difficulties in numerical computation when the discrete
kernel is badly conditioned and the number of observations is poor. Applying the proposed
method can always find a set of suitable BRDF coefficients for poorly sampled data. The
proposed method is an improvement of the traditional least squares error algorithm in
AMBRALS (Algorithm for MODIS (Moderate Resolution Imaging Spectroradiometer)
Bidirectional Reflectance Anisotropies of the Land Surface), see Strahler et al. (1999), and
is comparable to the regularized singular value decomposition method developed by
Wang et al. (2007). Hence the proposed method can be considered as a supplemental
algorithm for the robust estimation of the land surface BRDF/albedos. Numerical
performance is given in this paper for the widely used field-based 18 data sets among the
73 data sets (see Li et al., 2001) and for the satellite data.
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1. Introduction

[2] It is well-known that the anisotropy of the land
surface can be described by the bidirectional reflectance
distribution function (BRDF). It is known that the BRDF
models can be inverted to estimate the important biological
or climatological parameters of the Earth surface, such as
leaf area index and albedo [see Strahler et al., 1994]. The
information extraction on the terrestrial biosphere and other
problems for retrieval of land surface albedos from satellite
remote sensing have been considered by many authors in
recent years, see for instance the survey papers on the
kernel-based bidirectional reflectance distribution function
(BRDF) models by Pokrovsky and Roujean [2002, 2003];
Pokrovsky et al. [2003]. The state-of-the-art BRDF is to use
the linear kernel-based models, which can be mathemati-
cally described as the linear combination of the isotropic
kernel, volume scattering kernel, and geometric optics

kernel. The retrieval of the model coefficients is of great
importance for determining the land surface albedos. Other
than observation errors a limited or insufficient number of
observations is one of the most severe obstacles for the
estimation of BRDF. Therefore it is very desirable to
develop new techniques for the robust estimation of the
BRDF model parameters due to the scarcity of the number
of observations. In the work of Pokrovsky and Roujean
[2002], the authors utilized the QR decomposition and also
suggested using the singular value decomposition for the
inversion of the BRDF model. Later by Pokrovsky et al.
[2003], they compared several inversion techniques and
uncertainty in albedo estimates from the SEVIRI/MSG
observing system by using POLDER BRDF measurements.
The method by Pokrovsky et al. [2003] is quite statistical,
which does not require the selection of regularization
parameter, and hence it has high accuracy. But on the other
hand, that method requires some a priori information on
class of solution in search. In a study by Wang et al. [2005],
the authors proposed an interior point solution method for
the retrieval of land surface parameters, which utilizes the
least norm as an a priori, and obtain some stable numerical
results. In the studies of Wang et al. [2006b, 2007], the
authors performed successive tests to verify the feasibility
of the singular value decomposition method and proposed a

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D13101, doi:10.1029/2007JD009324, 2008
Click
Here

for

Full
Article

1Institute of Geology and Geophysics, Chinese Academy of Sciences,
Beijing, China.

2State Key Laboratory of Remote Sensing Science and Research Center
for Remote Sensing and GIS, Beijing Normal University, Beijing, China.

Copyright 2008 by the American Geophysical Union.
0148-0227/08/2007JD009324$09.00

D13101 1 of 11

http://dx.doi.org/10.1029/2007JD009324


regularized version of the singular value decomposition
method.
[3] The linear kernel-based BRDF model can be de-

scribed as follows [see Roujean et al., 1992]:

fiso þ kvol ti; tv;fð Þfvol þ kgeo ti; tv;fð Þfgeo ¼ r ti; tv;fð Þ; ð1Þ

where r is the bidirectional reflectance; the kernels kvol and
kgeo are so-called kernels, that is, known functions of
illumination and of viewing geometry which describe
volume and geometric scattering respectively; ti and tv are
the zenith angle of the solar direction and the zenith angle of
the view direction respectively; f is the relative azimuth of
sun and view direction; and fiso, fvol and fgeo are three
unknown parameters to be adjusted to fit observations.
Theoretically, fiso, fvol and fgeo are closely related to the
biomass such as leaf area index (LAI), Lambertian
reflectance, sunlit crown reflectance, and viewing and solar
angles. The vital task then is to retrieve appropriate values
of the three parameters.
[4] Generally speaking, the BRDF model includes ker-

nels of many types. However, it was demonstrated that the
combination of RossThick (kvol) and LiSparse (kgeo) kernels
had the best overall ability to fit BRDF measurements and
to extrapolate BRDF and albedo [see Hu et al., 1997;
Wanner et al., 1995; Li et al., 1999; Privette et al., 1997].
A suitable expression for the RossThick kernel kvol was
derived by Roujean et al. [1992]. In this paper we will use
the LiTransit kernel kTransit instead of the kernel kgeo since it
is more robust and stable than LiSparse nonreciprocal
kernel and the reciprocal LiSparse kernel ksparse (LiSparseR)
where the LiTransit kernel and the LiSparse kernel are
related by

kTransit ¼
ksparse; B � 2;
2
B
ksparse; B > 2;

�
ð2Þ

and B is given

B :¼ B ti; tv;fð Þ ¼ �O ti; tv;fð Þ þ sect0i þ sect0v

by Li et al. [2000]. More detailed explanation about O and t0

in the definition of kTransit are discussed by Wanner et al.
[1995]. We will use the combination of RossThick kernel
and LiTransit kernel in the numerical tests.
[5] To use the combined linear kernel model, a key issue

is to numerically solve the inverse model in a stable way.
However, it is difficult to do in practical applications due to
ill-posed nature of the inverse problem. It is suggested by
Wang et al. [2007], to fully employ the regularization
theory to tackle the difficulty. In this paper, we will
investigate the method by imposing smoothness constraint
and develop an a posteriori technique for choosing the
regularization parameter.
[6] This paper is organized as follows: in section 2, we

study the regularization methods in great detail for solving
the BRDF model. We discuss the ill-posed nature of the
problem in section 2.1; propose some smooth constraints
for regularization in section 2.2; present the variational
regularization in section 2.3; discuss the problem how to
select the smooth operator in sections 2.4 and 2.5; and

address an a posteriori choice of the regularization parameter
in section 2.6. Section 3 is devoted to several numerical
simulations to demonstrate our algorithm. In section 4,
some concluding remarks are given. Finally, we provide
appendices for deducing the a posteriori technique for
choosing the regularization parameter, for differentiation
of the Tikhonov functional, and for an appendix for
subroutine instructions on implementing the algorithm
proposed in this paper.
[7] Throughout the paper, we use the following

notations: ‘‘:=’’ denotes ‘‘defined as’’; ‘‘min’’ denotes ‘‘mini-
mizing’’ some functional; x and x denote the vector and the
continuous function respectively, so to other functions and
their corresponding vectors; ‘‘K*’’ denote the adjoint of an
operator K; ‘‘KT’’ denote the transpose of matrix K, and
diag(�) denotes a diagonal matrix.

2. Regularization for Parameter Retrieval by
Imposing Smoothness Constraint

[8] The BRDF model (1), a linear kernel-based model,
can be formulated as the following finite rank operator
equation

Kx ¼ y; ð3Þ

where K 2 R
M
N is the coefficient matrix, x 2 R

N is the
parameter to be retrieved, and y 2 R

M is the measurement.
The inversion of finite rank operator equations is discrete
ill-posed in general, it is of great importance how to find a
suitable method to stably retrieve the BRDF model
parameters. To tackle this difficulty, we intend to apply
the regularization theory and related methods to the BRDF
model parameter retrieval problem.

2.1. Ill-Posedness

[9] The ill-posedness arises because the linear kernel-
based BRDF model is underdetermined, for instance when
there are too few observations or poor directional range. A
single angular observation may lead to an underdetermined
system whose solution set is infinite (the null-space of the
operator contains nonzero vectors) or no solution (the rank
of the coefficient matrix is not equal to the rank of the
augmented matrix). Another reason that leads to the ill-
posedness is that error/noise propagation is significantly
enlarged in computation due to bad algebraic spectrum
distribution [see, e.g., Wang et al., 2007]. Because of the
ill-posedness of the inversion process, uncertainties in the
model and in the reflectance measurements do not simply
result in uncertainties on the solution. More severely, the ill-
posedness may lead to jumps in the solution space, i.e., the
solution found may spread in the whole parameter space
instead of being centered on the true solution [see Xiao et
al., 2003; Atzberger, 2004; Tikhonov and Arsenin, 1977;
Wang, 2007]. To alleviate those difficulties, it is necessary
to impose a priori information [see, e.g., Tarantola, 1987].
As is noted by Wang et al. [2007], different kinds of a priori
information can be employed. We adopt a popular a priori
information that simplifies the physical model by solving a
lp (p = 2) norm problem, which means the unknowns x can
be obtained under the lp scale.
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2.2. Smoothness Constraint

[10] The incorporation of a priori constraints may lead to
the stabilization of the ill-posed problem. However, the
incorporation of constraints is not a trivial task, which
may come from several sources, historically, empirically
or quantitatively. For land surface parameter retrieval prob-
lems, quantitative nature can be imposed to the entire set of
parameters. This information can be easily incorporated into
the mathematical functionals. More specifically, we presents
in the next subsection a mathematical functional that incor-
porates the notion of smoothness of the land surface
parameters. In other words, the variation of the parameters
in the physical process is smooth. Hence regularization can
be realized by knowing that the parameter distribution
varies smoothly. We will show that, by the appropriate
selection of this kind of constraints in the objective func-
tional to be minimized, both the uncertainty in the estimates
of the inverted parameters can be reduced and the accuracy
toward more realistic estimates can be obtained. In other
words, by incorporating appropriate constraints, we are able
to fit the observation data well and to estimate representa-
tive parameters of the land surfaces.

2.3. Variational Regularization

[11] Most of inverse problems in real environment are
generally ill-posed. Regularization methods are widely used
to solve such ill-posed problems. The complete theory for
regularization was developed by Tikhonov and his col-
leagues [see Tikhonov and Arsenin, 1977]. For the discrete
model (3), we suppose y is the true right-hand side, and
denote yn the measurements with noise which represents the
bidirectional reflectance. The Tikhonov regularization meth-
od is to solve a regularized minimization problem

Ja xð Þ :¼ k Kx� yn k2l2 þa k D1=2x k2l2! min ð4Þ

instead of solving

J xð Þ ¼ k Kx� yn k2l2! min : ð5Þ

In (4), a is the regularization parameter and D is a positively
(semi)definite operator. By a variational process (see
Appendix B), the minimizer of (4) satisfies

KTKxþ aDx ¼ KTyn: ð6Þ

The operator D is a scale matrix which imposes smoothness
constraint to the solution x. Apparently, the solution can be
written as

x ¼ ðKTK þ aDÞ�1
KTyn: ð7Þ

The scale operator D and the regularization parameter a can
be considered as some kind of a priori information, which
will be discussed next.

2.4. Choice of the Scale Operator D

[12] To regularize the ill-posed problem discussed in the
previous subsection, the choice of the scale operator D has
great impact to the performance to the regularization. Note
that the matrix D plays the role in imposing a smoothness

constraint to the parameters and in improving the condition
of the spectrum of the adjoint operator KTK. Therefore it
should be positively definite or at least positively semi-
definite. One may readily see that the identity may be a
choice. However, this choice does not fully employ the
assumption about the continuity of the parameters.
[13] In the work ofWang et al. [2007], we assume that the

operator equation (3) is the discretized version of a contin-
uous physical model

K x tð Þð Þ ¼ y tð Þ ð8Þ

with K the linear/nonlinear operator, x(t) the complete
parameters describing the land surfaces and y the observa-
tion. Most of the kernel model methods reported in literature
may have the above formulation. Hence instead of
establishing regularization for the operator equation (3) in
the Euclidean space, it is more convenient to perform the
regularization to the operator equation (8) on an abstract
space. So from a priori considerations we suppose that the
parameters x is a smooth function, in the sense that x is
continuous on [a, b], is differentiable almost everywhere
and its derivative is squareintegrable on [a, b]. By Sobolev’s
imbedding theorem [see, e.g., Tikhonov and Arsenin, 1977;
Xiao et al., 2003], the continuous differentiable function x
in W1,2 space imbeds into integrable continuous function
space L2 automatically. Here, the L2 space is defined as the
set of functions which are square-integrable, i.e., L2(W): =
{x(t):

R
Wjx(t)j2dt <1}; the SobolevW1,2 space is defined as

the set of functions which are continuous and differentiable
with the bounded norms of itself and its generalized
derivatives in L2, i.e., W

1,2(W) := {x(t): x(t) 2 C(W), x(t) 2
L2(W), dxdt 2 L2(W),

R
W(x

2 +
P

i = 1
n (dx

dti
)2)dt1dt2 � � � dtn < 1},

where C(W) denotes the continuous space. The inner
product of two functions x(t) and y(t) in W1,2 space is
defined by

x tð Þ; y tð Þð ÞW 1;2 :¼
Z
W

x tð Þy tð Þ þ
Xn
i¼1

@x

@ti

@y

@tj

 !
dt1dt2 � � � dtn;

ð9Þ

where W is the assigned interval of the definition.
[14] Now we construct a regularizing algorithm that an

approximate solution xa 2 W1,2[a, b] which converges, as
error level approaching zero, to the actual parameters in
the norm of space W1,2[a,b], precisely we construct the
functional

Ja x½ � ¼ rF Kx; y½ � þ aL xð Þ; ð10Þ

where

rF Kx; y½ � ¼ 1

2
k Kx� y k2L2

and

L xð Þ ¼ 1

2
k x k2W 1;2 :
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[15] Assume that the variation of x(t) is flat near the
boundary of the integral interval [a, b]. In this case, the
derivatives of x are zeros at the boundary of [a, b]. Let hr be
the step size of the grids in [a, b], which could be
equidistant or adaptive. Then after discretization of L(x),
D is a tridiagonal matrix in the form

D :¼ D1 ¼

1þ 1

h2r
� 1

h2r
0 � � � 0

� 1

h2r
1þ 2

h2r
� 1

h2r
� � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � � 1

h2r
1þ 2

h2r
� 1

h2r

0 � � � 0 � 1

h2r
1þ 1

h2r

2
66666666666664

3
77777777777775
:

For the linear model (1), after the kernel normalization, we
may consider [a, b] = [�1, 1]. Thus D is in the above form
with hr = 2/(N�1).

2.5. Remarks on Choosing a Scale Operator D

[16] There are many kinds of techniques for choosing the
scale matrix D appropriately. In Phillips-Twomey’s formu-
lation of regularization [see, e.g., Wang et al., 2006a], the
matrix D is created by the norm of the second differences,P

i = 2
N�1 (xi�1 � 2xi + xi+1)

2, which leads to the following
form of matrix D

D :¼ D2

¼

1 �2 1 0 0 0 � � � 0 0 0 0

�2 5 �4 1 0 0 � � � 0 0 0 0

1 �4 6 �4 1 0 � � � 0 0 0 0

0 1 �4 6 �4 1 � � � 0 0 0 0

..

. ..
. . .

. . .
. . .

. . .
. . .

. ..
. ..

. ..
. ..

.

0 0 0 � � � 0 1 �4 6 �4 1 0

0 0 0 � � � 0 0 1 �4 6 �4 1

0 0 0 � � � 0 0 0 1 �4 5 �2

0 0 0 � � � 0 0 0 0 1 �2 1

2
666666666666666664

3
777777777777777775

:

However, the matrix D is badly conditioned and thus the
solution to minimize the functional Ja [x] with D as the
smooth constraint is observed to have some oscillations
[Wang et al., 2006a, 2006b]. Another option is the negative
Laplacian [see e.g., Wang and Yuan, 2003; Wang, 2007]:

Lx :¼ �
Xn
i¼1

@2x

@t2i
; ð11Þ

for which the scale matrix D for the discrete form of the
negative Laplacian Lx is

D :¼ D3 ¼

1 �1 0 � � � 0 0

�1 2 �1 � � � 0 0

..

. ..
. ..

.
� � � . .

. . .
.

0 0 0 �1 2 �1

0 0 0 � � � �1 1

2
66664

3
77775:

Where we assume that the discretization step length as 1.
The scale matrix D3 is positive semidefinite but not positive
definite and hence the minimization problem may not work
efficiently for severely ill-posed inverse problems. Another
option of the scale matrix D is the identity, i.e., D: = D4 =
diag(e), where e is the components of all ones, however this
scale matrix is too conservative and may lead to over-
regularization.

2.6. A Posteriori Parameter Selection Method

[17] As noted above, the choice of the regularization
parameter a is important to tackle the ill-posedness. A
priori choice of the parameter a allows 0 < a < 1. However,
the a priori choice of the parameter does not reflect the
degree of approximation that may lead to either over-
estimate or under-estimate of the regularizer.
[18] We will use the widely used discrepancy principle

[see Tikhonov and Arsenin, 1977; Tikhonov et al., 1995;
Xiao et al., 2003] to find an optimal regularization param-
eter. In fact, the optimal parameter a* is a root of the
nonlinear function

Y að Þ ¼ k Kxa � yn k2 �d2; ð12Þ

where d is the error level to specify the approximate degree
of the observation to the true noiseless data. Noting Y(a) is
differentiable, fast algorithms for solving the optimal
parameter a* can be implemented. In this paper we will
use the cubic convergent algorithm developed by Wang and
Xiao [2001]:

akþ1 ¼ ak �
2Y akð Þ

Y0 akð Þ þ Y0 akð Þ2 � 2Y akð ÞY00 akð Þ
� �1

2

: ð13Þ

In the above cubic convergent algorithm, the function Y0(a)
and Y(a) have the following explicit expression:

Y0 að Þ ¼ �ab0 að Þ;

Y00 að Þ ¼ �b0 að Þ � 2a k dxa

da
k

l2
þ xa;

d2xa

da2

� �� �
;

where b(a) = kxakl22 , b0(a) = 2(dxa
da , xa), and xa, dxa/da and

d2xa/da
2 can be obtained by solving the following

equations:

KTK þ aD
� �

xa ¼ KTyn; ð14Þ

KTK þ aD
� � dxa

da
¼ �Dxa; ð15Þ

KTK þ aD
� � d2xa

da2
¼ �2D

dxa

da
: ð16Þ

[19] To solve the linear matrix-vector equations (14)–(16),
we use the Cholesky (square root) decomposition
method. A remarkable characteristic of the solution of
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(14)–(16) is that the Cholesky decomposition of the coeffi-
cient matrix KTK + aD needs only once, then the three
vectors xa, dxa/da, d2xa/da

2 can be obtained cheaply.
Detailed description on implementing the algorithm is given
in Appendix C.

3. Numerical Performance

3.1. Preliminaries

[20] Denote by M the number of measurements in the
kernel-based models. Then the operator equation (3) can be
rewritten in the following matrix-vector form

Kx ¼ y; ð17Þ

where

K ¼

1 kgeo 1ð Þ kvol 1ð Þ
1 kgeo 2ð Þ kvol 2ð Þ
..
. ..

. ..
.

1 kgeo Mð Þ kvol Mð Þ

2
6664

3
7775;

x ¼
fiso
fgeo
fvol

2
4

3
5; y ¼

r1

r2
..
.

rM

2
64

3
75:

In practice, the coefficient matrix K cannot be determined
accurately, and a perturbed version ~K is obtained instead.
Also instead of the true measurement y, the observed
measurement yn = y + n is the addition of the true
measurement y and the noise n, which for simplicity is
assumed to be additive Gaussian random noise. Therefore it
suffices to solve the following operator equation with
perturbation

~Kx ¼ yn:

Where ~K: = K + dB for some perturbation matrix B and d
denotes the noise level (upper bound) of n in (0, 1). In our
numerical simulation, we assume that B is a Gaussian
random matrix, and also that

k yn � y k� d <k yn k : ð18Þ

The above assumption about the noise can be interpreted as
that the signal-to-noise ratio (SNR) should be greater than 1.
We make such an assumption as we believe that observa-
tions (BRDF) are not trustable otherwise. It is clear that (17)
is an underdetermined system if M � 2 and an over-
determined system if M > 3. Note that for satellite remote
sensing, because of the restrictions in view and illumination
geometries, ~KT~K needs not have bounded inverse [see Gao
et al., 1998; Verstraete et al., 1996; Li et al., 2001]. We
believe that the proposed regularization method can be
employed to find an approximate solution xa

y satisfies

k ~Kxya � yn k! min :

[21] In the following, we demonstrate several numerical
tests for computing the land surface parameters by using the
field observed data in Table 1 and the moderate resolution
imaging spectroradiometer (MODIS) satellite data and
Landsat TM data. To demonstrate the feasibility of our
algorithm, we first apply our proposed regularization meth-
od to ill-posed field-observed data. Then, we apply it to the
satellite data, where only one observation is provided.

3.2. Tests on Ill-Posed Field-Observed Data

[22] In this test, we choose the widely used 73 data sets
referred by Li et al. [2001]. Among the 73 sets of BRDF
measurements, only 18 sets of field-measured BRDF data
with detailed information about the experiments are known,
including biophysical and instrumental information [see Hu
et al., 1997; Deering et al., 1992, 1994, 1995; Eck and
Deering, 1992; Kimes et al., 1985, 1986]. These data sets
cover a large variety of vegetative cover types, and are fairly
well representative of the natural and cultivated vegetation.
Table 1 summarizes the basic properties of the data sets
used in this paper. For those selected field data, the
observations are sufficient. If the kernel matrix ~K is well-
conditioned, the problem is well-posed, and the regulariza-
tion is unnecessary, which can also be considered a regu-
larization procedure with zero regularization parameter.
Even for sufficient observations, most of the kernel matrix
~K could be ill-conditioned, and hence the problem is
discrete ill-posed. In that situation, one has to resort to
regularization or preconditioning to make the proposed
algorithm workable. Our proposed method is quite adaptive
no matter whether the kernel matrix ~K is ill-conditioned or
well-conditioned.
[23] With the nice field data, the numerical experiment

can be done to test the robustness of the algorithm by using
a limited number of observations, and then to compare the
retrieval with the measurements. The ill-posed situations are
generated by significantly reducing the number of observa-
tions from the field data in Table 1.
[24] We choose one or two observations as limited

number of observations and compare the retrieval results
by our proposed regularization methods with the regularized
singular value decomposition (NTSVD) [see Wang et al.,
2007]. Comparison results are given in Tables 2 and 3. We
do not list all of the results since the data sets can be used to
generate an enormous number of such kinds of ill-posed
situations. In the two tables, these methods are denoted by
NTSVD, Tikh(a) (a = d2), Tikh(b) (D is in the form ofD1 and
a is chosen by a posteriori method addressed in section 2.6),
Tikh(c) (D is in the form D2 and a is chosen by a posteriori
method addressed in section 2.6), Tikh(d) (D is in the form
D3 and a is chosen by a posteriori method addressed in
section 2.6), and Tikh(e) (D is in the form D4 and a is

Table 1. Data Sets Used in the Simulation

Data Cover Type LAI

Ranson_soy.827 soy 2.9
Kimes.orchgrass orchard grass 1
Parabola.1994.asp-ifc2 aspen 5.5
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chosen by a posteriori method addressed in section 2.6).
The true white sky albedo (WSA) is calculated from well-
posed situations using AMBRALS, i.e., full observation
data. It deserves pointing out that the standard opera-
tional algorithm used in AMBRALS does not work for
such severely ill-posed situations. If we regard WSA >
1 or WSA < 0 as failed inversion, it is clear that our
proposed method works for all of the cases. It follows
from the experiments that our new proposed method
(Tikh(b)) works, for a single observation, and performs
better than the NTSVD and the standard Tikhonov
regularization with a priori choice of the regularization
parameter (Tikh(a)).

3.3. Tests on Satellite Data: Insufficient Observation
From Modis and TM

[25] In this test, we use atmospherically corrected mod-
erate resolution imaging spectroradiometer (MODIS) 1B
product acquired on a single day as an example of single
observation BRDF at certain viewing direction. Each pixel
has different view zenith angle and relative azimuth angle.
The data MOD021KM.A2001135-150 with horizontal tile
number (26) and vertical tile number (4) were measured
covers Shunyi county of Beijing, China. The three param-
eters are retrieved by using this 1B product. Figure 1 plots
the reflectance for band 1 of a certain day DOY = 137. In
MODIS AMBRALS algorithm, when insufficient reflectan-
ces or a poorly representative sampling of high quality

Table 2. Comparison of Computational Values of the WSAs From Data Sets in Table 1 for Single

Observation and for Two Observations With the True WSAs Values (Multiangular Observations) for

VisRed Band

Methods Single Observation Two Observations True WSAs

NTSVD 0.0449047 0.0442712
Tikh(a) 0.0638937 0.0386419
Tikh(b) 0.0401528 0.0560726

Ranson_soy.827 0.0405936
Tikh(c) 0.0633967 0.0590594
Tikh(d) �0.0009147 0.0539707
Tikh(e) 0.0476311 0.0583683
NTSVD 0.1082957 0.1058740
Tikh(a) 0.0397185 0.0860485
Tikh(b) 0.0753925 0.1214918

Kimes.orchgrass 0.0783379
Tikh(c) 0.26211583 0.4365220
Tikh(d) �0.0018020 0.0383555
Tikh(e) 0.1137684 0.1707774
NTSVD 0.0364620 0.0389198
Tikh(a) 0.0447834 �0.0040831
Tikh(b) 0.0262501 0.0102457

Parabola.1994.asp-ifc2 0.0227972
Tikh(c) 0.0798633 �0.0874783
Tikh(d) �0.0006110 �0.0401510
Tikh(e) 0.0375009 0.0547068

Table 3. Comparison of Computational Values of the WSAs From the Data Sets in Table 1 for

Single Observation and for Two Observations With the True WSAs Values (Multiangular

Observations) for Nir Band

Methods Single Observation Two Observations True WSAs

NTSVD 0.4469763 0.4348320
Tikh(a) 0.6359822 0.4195730
Tikh(b) 0.3996775 0.5439493

Ranson_soy.827 0.3653728
Tikh(c) 0.6310461 0.9247240
Tikh(d) �0.0091045 �0.0098136
Tikh(e) 0.4741162 0.6277249
NTSVD 0.3890207 0.37216767
Tikh(a) 0.2048903 0.2945934
Tikh(b) 0.2708260 0.4458619

Kimes.orchgrass 0.2963261
Tikh(c) 0.9415755 1.8140732
Tikh(d) �0.0064732 0.1927318
Tikh(e) 0.4086801 0.6015300
NTSVD 0.5517209 0.5741842
Tikh(a) 0.6776356 �0.0617838
Tikh(b) 0.3972022 0.2398577

Parabola.1994.asp-ifc2 0.4240376
Tikh(c) 1.2084479 �0.8953630
Tikh(d) �0.0092437 �0.4071125
Tikh(e) 0.5674424 0.8185223
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reflectances are available for a full inversion, a database of
archetypal BRDF parameters is used to supplement the data
and a magnitude inversion is performed [see Verstraete et
al., 1996; Strahler et al., 1999]. We note that the standard
MODIS AMBRALS algorithm cannot work for such an
extreme case, even for MODIS magnitude inversion since it
is hard to obtain seasonal data associated with a dynamic
land cover in a particular site. But our method still works for
such an extreme case because that smoothness constraint is
implanted into the model already. Because of the limitations
of the observation, there are black pixels with low energy in
the retrieved albedo. Note that the albedo is the integration
of the BRDF over all directions; therefore, there should be a
similarity between the BRDF and the albedo. So, for low
energy pixels of the albedo, we use a polynomial fitting
from BRDF to obtain the corresponding albedo, and we plot
the white-sky albedo (WSA) retrieved by Tikh(b) for band 1
of one observation (DOY = 137) in Figure 2. From Figure 2
we see that the albedo retrieved from insufficient observa-
tions can generate the general profile. We observe that most
of the details are preserved though the results are not
perfect. The results are similar to the one from NTSVD
method developed by Wang et al. [2007]. Hence we
conclude that both methods can be considered useful
methods for retrieval of land surface parameters and for
computing land surface albedos. Thus both algorithms can
be considered as supplemental algorithms for the robust
estimation of the land surface BRDF/albedos.
[26] We also test our algorithms to the Landsat Thematic

Mapper (TM) data measured in Shunyi county of Beijing,
China. The TM sensor is an advanced, multispectral scan-

ning, Earth resources instrument designed to achieve higher
image resolution, sharper spectral separation, improved
geometric fidelity, and greater radiometric accuracy and
resolution. Figure 3 plots the reflectance for band 5 on
17 May 2001. The spatial resolution for the TM sensor
on band 5 is 30 m. The white-sky albedo (WSA) retrieved
by Tikh(b) for band 5 of one observation on 17 May 2001
is plotted in Figure 4. The retrieved results show that
our algorithms work for satellite data with high spatial
resolutions.

3.4. Discussion of the Numerical Results

[27] Experimental results on different data sets indicate
that our proposed regularization method is feasible for ill-
posed land surface parameter retrieval problems.
[28] We want to emphasis that our method can generate

smoothing data for helping retrieval of parameters once
sufficient observations are unavailable. As we have pointed
out by Wang et al. [2007], we do not suggest discarding the
useful history information (e.g., data that is not too old) and
the multiangular data. Instead, we should fully employ such
information if it is available. The key to why our algorithm
outperforms previous algorithms is because that our algo-
rithm is adaptive, accurate and very stable, which solves
kernel-based BRDF model of any order, which may be a
supplement for BRDF/albedo retrieval product.
[29] For the remote sensor MODIS, which can generate a

product by using 16 d different observations data, this is not
a strict restriction for MODIS, since it aims at global
exploration. For other sensors, the period for their detection
of the same area will be longer than 20 d or more. Therefore
for vegetation in the growing season, the reflectance and

Figure 1. Reflectance for band 1 of MOD021KM.A2001137.
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Figure 2. White-sky albedo retrieved by the proposed Tikhonov regularization method for band 1 of
MOD021KM.A2001137.

Figure 3. Reflectance for band 5 of Landsat Thematic Mapper Data (TM) on 17 May 2001.
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albedos will change significantly. Hence robust algorithms
to estimate BRDF and albedos in such cases are highly
desired. Our algorithm is a proper choice, since it can
generate retrieval results which quite approximate the true
values of different vegetation type of land surfaces by
capturing just one time of observation.
[30] Moreover, for some sensors with high spatial reso-

lution, the quasi multiangular data are impossible to obtain.
This is why there are not high resolution albedo products.
But with our algorithm, we can achieve the results. This is
urgently needed in real applications.

4. Concluding Remarks and Future Research

[31] A limited or insufficient number of observations is
one of the most severe obstacles for a better estimation of
BRDF, which leads to the ill-posed nature of model inver-
sion. Therefore it is desirable to develop new techniques for
the robust estimation of the BRDF model parameters due to
scarcity of the number of observations. In this study, we
thoroughly investigate the regularization methods, propose
an a posteriori discrepancy method for choosing the regu-
larization parameter and the creation of smoothness data to
establish well-posedness.
[32] Our numerical simulations show that the regulariza-

tion method proposed in this paper is suitable for solving ill-
posed land surface parameter retrieval problems, and also
applicable for inverse problems in other disciplinary sub-

jects in Earth surface parameter retrieval problems. Our
algorithm can be considered as a supplement to BRDF/
albedo algorithms.
[33] Since the regularization methods are based on the

variational model, therefore, many optimization methods
can be used to solve the problem. Interesting problems are
how to construct efficient a priori information quantitatively
from solution space of the problem to incorporate it into
regularization model, and how to terminate iterative algo-
rithms to yield optimality and regularity.

Appendix A: Morozov’s Discrepancy Principle

[34] In this appendix, we recall the Morozov’s discrep-
ancy principle for the continuous abstract operator equation

yn :¼ yþ n ¼ Kxþ n;

where K is an operator maps x to y and n is additive noise.
The discrepancy kKx-ynk refers to the norm of the deviation
of the noisy observation to the true noise-free data. Here the
norm k � k used above refers to the L2 norm. Assume that
the noise level (upper bound) for n is known as d. Then
Mozorov’s discrepancy principle requires solving the
minimization problem [seeTikhonov and Arsenin, 1977;
Xiao et al., 2003]

k x k ! min

Figure 4. White-sky albedo retrieved by the proposed Tikhonov regularization method for band 5 of the
Landsat Thematic Mapper Data (TM) on 17 May 2001.
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under the compact constraint

x 2 S ¼ fx :k Kx� yn k � dg:

The Morozov’s discrepancy principle is based on the
viewpoint that the magnitude of the error should be in
agreement with the accuracy of the assignment of the input
data.
[35] Noting that S is closed and convex, the above

minimization in Morozov’s discrepancy principle has a
unique vector of minimum norm on the boundary of the
set S. We denote that unique vector by xa. Therefore a =
a(d) by the criterion

k Kxa � yn k¼ d

The assertion can be interpreted as that the discrepancy
should be in agreement with the error in the input data.
[36] Denote by Y(a) = kKxa�ynk2-d2, it is easy to show

that there is a unique value a = a(d) of the regularization
parameter satisfying Y(a) = 0. The proof can be made by
applying the following steps: (1) verify that Y0(a) > 0,
which indicates that Y(a) is increasing and continuous; and
(2) show that Y(a) > 0 as a ! 1 and Y(a) � 0 as a ! 0.
The detail of the proof is left to the readers.

Appendix B: Computation of the Gradient
of a Functional

[37] Let X and Y be Hilbert spaces, and K: X ! Y be a
bounded operator. Now we consider the operator equation

Kx ¼ y; x 2 X ; y 2 Y : ðB1Þ

If the operator K does not have bounded inverse, the above
operator equation would be ill-posed. Associated with the
above operator equation, we define the Tikhonov functional
as

Ja xð Þ :¼ 1

2
k Kx� y k2Y þa

2
k D

1
2x k2X ; ðB2Þ

where a > 0 is the regularization parameter and D is a
positive (semi)definite operator. For any h 2 X and r 2 R,
we have

Ja xþ rhð Þ ¼ 1

2
k Kx� y k2Y þa k D1=2x k2X
� �

þ r
2

Kx� y;Khð ÞYþ Kh;Kx� yð ÞY
�

þ a D1=2x;D1=2h
� �

X
þa D1=2h;D1=2x
� �

X
Þ

þ r2

2
k Kh k2Y þa k D1=2h k2X
� �

:

Hence

d

dr
Ja xþ rhð Þjr¼0 ¼ Kx� y;Khð ÞYþa Dx; hð ÞX

¼ K*K þ aDð Þx� K*y; hð ÞX :

which yields that the gradient is given by

grad Ja xð Þ½ � ¼ K*K þ aDð Þx� K*y:

[38] By the first-order necessary condition [see, e.g.,Wang,
2007], the minimizer xa should satisfy grad[Ja(xa)] = 0,
which gives xa = (K*K + aD)�1K*y.

Appendix C: Instructions on Implementing the
Regularizing Algorithms

[39] The following are the procedures and subroutines of
our regularization algorithms described above.
[40] Creation of data D subroutine: since the matrix D

(D1-D4) is in the diagonal form and is symmetric, therefore
it is easy to make code.
[41] A posteriori choice of the regularization parameter

and solving the regularizing problem subroutine: we list the
procedure for computation as follows, so users can repeat
the experiment easily.
[42] Algorithm C.1 (an a posteriori algorithm for solving

the regularizing problem).
[43] Step 1 Input ~K, yn, the error level d > 0, the initial

guess value a0 > 0, kmax and the stopping tolerance e > 0,
set k: = 0;
[44] Step 2 Solve equations (14)–(16);
[45] Step 3 Compute Y(ak), Y

0(ak) and Y(ak);
[46] Step 4 Update ak+1 by iterative formula (13);
[47] Step 5 If jak+1-akj � e or k = kmax, STOP; otherwise,

set k: = k + 1, GOTO Step 2.
[48] In our numerical tests, the parameters are a0 = 0.001,

d = 1.0 e�6, e = 1.0 e�6 and kmax = 100. However, the step
k = kmax is never activated.
[49] Solving linear equations subroutine: Solving the

equations (14)–(16) can be easily completed by Cholesky
decomposition method,

KTK þ aD ¼ GTG;

then solving GTGx = y can be simply finished by solving

GTu ¼ y; Gx ¼ u:
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