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In this paper, we consider the nonnegatively constrained multichannel image deblurring problem and
propose regularizing active set methods for numerical restoration. For image deblurring problems, it is
reasonable to solve a regularizing model with nonnegativity constraints because of the physical meaning
of the image. We consider a general regularizing lp − lq model with nonnegativity constraints. For p and q
equaling 2, the model is in a convex quadratic form, therefore, the active set method is proposed since the
nonnegativity constraints are imposed naturally. For p and q not equaling 2, we present an active set
method with a feasible Newton-conjugate gradient solution technique. Numerical experiments are
presented for ill-posed three-channel blurred image restoration problems. © 2009 Optical Society of
America

OCIS codes: 100.1830, 100.3020, 100.3190, 000.4430.

1. Introduction

In applied optics, remote sensing science, and also
geophysical science, a major problem is image re-
storation. It is because the recorded images are
usually degraded due to various reasons. For exam-
ple, the image may be degraded by sensor noise, mis-
focus of the CCD camera, nonuniform motion,
atmospheric aerosols, and random atmospheric tur-
bulence. A key problem in image restoration is to re-
store the image by solving a blurring model and
removing noise. With the advance of observing sys-
tems, image data acquisition, nowadays, is moving
more and more from single channel/band to multi-
channel/band, from single sensor to multisensor,

from single spectrum to multiple spectra. This leads
tomore advanced and complex imaging processing as
well as image restoration. Multichannel image re-
storation, like single channel image restoration, is
a basic problem. It has received more and more at-
tention recently [1–18]. This is due to the fact that
there may be degradation coming from within-
channel and between-channel degradation as well
as atmospheric aerosols and random atmospheric
turbulence for astronomical images. Multichannel
images are encountered, with representative exam-
ples being color images and sequences of images,
in which case each channel is represented by a frame.
Such images may be degraded due to within-channel
but also between-channel blurs. They can be restored
by applying a single channel restoration algorithm
to each channel independently. Better results are
expected, however, if a multichannel restoration
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approach is adopted, even when only within-
channel degradations exist. This is because with
such an approach the within-channel correlations
are utilized [9].
A multichannel linear degradation digital model

can be formulated as follows:

hn ¼ hþ n∶ ¼ Kf þ n; ð1:1Þ
where K is the degradation matrix, n is the unknown
noise or measurement errors, hn is the observed mul-
tichannel image with noise/error, h is assumed to be
the noise-free ideal image, and f is the original multi-
channel image. For an N-channels linear model with
M ×M pixels each, the observed, noise-free, and ori-
ginal images and the noise can be expressed, respec-
tively, as

hn ¼

2
666664

hn;1
hn;2

..

.

hn;N

3
777775
; h ¼

2
666664

h1
h2

..

.

hN

3
777775
;

f ¼

2
666664

f1
f2

..

.

fN

3
777775
; n ¼

2
666664

n1
n2

..

.

nN

3
777775
; ð1:2Þ

where each of the M2 vectors hn;i, hi, f i, and ni
results from the lexicographic ordering of the two-
dimensional signals in each channel. The NM2 ×
NM2 multichannel degradation matrix is given by

K ¼

2
6664
K11 K12 � � � K1N

K21 K22 � � � K2N

..

. ..
. � � � ..

.

KN1 KN2 � � � KNN

3
7775; ð1:3Þ

where the operators Kii and Kij (i ≠ j) are of dimen-
sions M2 ×M2 and represent the within-channel
and the between-channel degradation operators, re-
spectively.
Many methods have been developed for solving the

linear multichannel system, e.g., minimum mean-
squared error multispectral image restoration [12],
least-squares filtering for color image restoration
based on spectral and spatial correlations [14], multi-
channel Wiener filtering in color image restoration
based on multichannel autoregressive image model-
ing [1], constrained least-squares restoration of
multichannel images using both within- and
between-channel deterministic information [9],
iterative regularized least-mean mixed-norm image
and multichannel restoration [10,11], regularization
based on the multichannel cross-validation function
[18], double-regularization with conjugate gradient
(CG) type alternative-minimization approach for

the blind restoration of the multichannel imagery
[5], and the related methods contained in these
references.

But these papers do not consider the nonnegativity
constraints of the solution, and in many cases the ne-
gative solutions are physically meaningless. For ill-
posed inverse problems, applying a priori knowledge
to the solution is necessary for successful inversion.
For our problems, we consider nonnegativity con-
straints of the solution as our a priori knowledge
and apply it for regularizing ill-posedness. Specifi-
cally, in this paper, we consider a general regulariz-
ing lp − lq model with nonnegativity constraints. Due
to the fact that the intensity of an image is always
nonnegative, imposing a nonnegativity constraint,
i.e., f ≥ 0, is natural. For p and q equaling 2, the
model is a convex quadratic form. Therefore, a regu-
larizing active set method is proposed since the non-
negativity constraints are imposed naturally. For p
and q not equaling 2, we propose a regularizing ac-
tive set method with a feasible Newton-CG techni-
que. We emphasize the importance of the model in
the signal/imaging area where the data are observed
by sensors. In our model, p, q are any values greater
than 0, which is quite important for many signal/
image restoration problems. For example, the cases
of p ¼ 2 and q ¼ 1 or p ¼ 2 and q → 0 represent
“complete” sparse reconstruction of band-limited sig-
nals. In our model, the image data are assumed to be
observed by sensor (which is always band limited),
therefore the model is new to the literature for some
choices of values of p and q, and the model does not
need to be convex.

The paper is organized as follows. In Section 2, the
regularization model on the lp and lq scale is formu-
lated, and the solution methods when p ¼ 2 are re-
viewed. A regularizing active set method for p ¼ q
¼ 2 is proposed in Subsection 3.B. For general values
of p and q, we propose in Subsection 3.C, a regular-
izing active set method with a feasible Newton-CG
technique. Other issues about computing an a
priori trial solution and choosing regularization
parameters and scale matrices are presented in Sub-
sections 3.D and 3.E. Experimental results and con-
clusions are presented in Sections 4 and 5. Finally,
Appendix A introduces the active set method for non-
negatively constrained quadratic programming pro-
blems and provides a feasible CG method.

2. Unconstrained Regularization Model on the lp and
lq Scale

For the linear problem in Eq. (1.1), it is natural to
require that the error between the observed and
the noise-free images be as small as possible, i.e.,
that the energy of the noise be minimal,

∥hn − h∥ ¼ ∥n∥ → minimization:

Here ∥ · ∥ is the norm in any form. However, due to
the fact that the image restoration problem is
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ill-posed, the above problem is unstable. Therefore
introducing a regularization technique is necessary.
We consider a regularization model in general

form:

minJ½f�∶ ¼ 1
2
∥Kf − hn∥

p
lp
þ ν
2
∥Lðf − f0Þ∥qlq ; ð2:1Þ

where p, q > 0, which are specified by users; ν > 0 is
the regularization parameter; L is the scale operator;
and f0 is an a priori solution of the original model.
This formulation includes most of the developed
methods. The lp norm of a vector f refers to ∥f∥lp ¼
ðPNM2

i¼1 jf ijpÞ1=p and ∥f∥plp ¼
P

NM2

i¼1 jf ijp. Norms with
different values of p mean a different scale for the
vector f. Particularly, for p ¼ 2 and q ¼ 1, the model
represents nonsmooth and sparse regularization,
which is important for model parameter retrieval
problems [19,20].
A canonical regularization method for solving Eq.

(1.1) is Tikhonov regularization, whose standard
form is given by setting p ¼ 2 in Eq. (2.1) with differ-
ent choices of values of q, i.e.,

min ∥Kf − hn∥2l2 þ νΓðfÞ; ð2:2Þ

where Γð·Þ is a function whose role is to give some
penalization to the unknown f. There are a lot of
tricks for choosing Γð·Þ (see [21,22] for smooth regu-
larization and [23,24] for nonsmooth regularization).
For example, ΓðfÞ can be defined as ðLf; fÞ, where L is
a scale operator that can be chosen as a positive de-
finite or positive semi-definite matrix. This choice is
equivalent to setting q ¼ 2 and L∶ ¼ L1=2 in Eq. (2.1).
Usually L is sparse for improving the condition of the
original kernel. In Eq. (2.2), ν > 0 is the so-called reg-
ularization parameter, which plays a major role in
regularizing the ill-posedness. The value of ν is posi-
tive and will be typically small. But the choice of an
appropriate ν is a difficult thing, which is usually re-
lated to the spectrum of the discrete kernelK and the
unpredictable noise level in h [21]. The solution
methods of Eq. (2.2) include a singular value decom-
position based direct method [25], Newton and quasi-
Newtonmethods [26], gradient methods with various
preconditioning techniques, and nonmonotone gradi-
ent methods [27,28]. The CG method has been
proved to be an efficient iterative regularization
method for recovering the correct image from its de-
gradation [29]. Trust region methods have been re-
cently proved to be another useful regularization
tool for image restoration [30,31] and have been
proved to be a kind of regularization method [30,32].
These methods involve solving a trust region subpro-
blem in each inner iteration and accepting a new
trial step within its trust region. In addition, consid-
erable efforts were made to impose nonnegativity
constraints on the minimization problem in Eq. (2.2)
[28,33–36]. But all of the research is based on single
channel imaging problems. We consider enforcing

nonnegativity constraints on the regularization mod-
el in Eq.(2.1) on the lp and lq scale and study using
the regularization model (2.1) with new solution
methods for solving the multichannel image deblur-
ring problem. And particularly, we concern ourselves
with the nonconvex case, i.e., p, q ≠ 2. The convexity
assumption is too strict and may be invalid in many
situations, say when the model parameters are
sparse and nonsmooth. As is well known that the
pixel of the land surface area represents a complex
structure, full of nonconvexity. The observed part
may contain nondifferentiable structure and may be
sparse. Therefore, convexity assumption may not be
an “effective model assumption.”

3. Regularizing Active Set (RAS) Method for the
Constrained Minimization Model

Originally, the active set method was designed as a
well-posed quadratic programming problem [37–39].
We consider applying the active set method to an ill-
posed multichannel image recovering problem and
solve a regularizing problem. Recently, this method
was applied for solving an aerosol particle size distri-
bution function retrieval problem [40]. And it was re-
ported in Ref. [41] that the active method is also
applicable for large scale computational problems.

A. Active Set Method for Nonnegatively Constrained
Minimization

The active set method is originally designed for well-
posed quadratic programming problems [37–39]. In
particular, it is used to solve constrained quadratic
programming problems of the form

minϕðxÞ ¼ cþ bTxþ 1
2
xTAx; s:t:Dx ≥ l; ð3:1Þ

where ϕðxÞ is a quadratic function, A ∈ RN×N , and is
symmetric; b ∈ RN ; c is a constant; D ∈ RM×N ; and
l ∈ RM. An active method is an implicit Newton-type
method for solving the constrained quadratic pro-
gramming problem (3.1), which describes a method
for identifying a correct set of active inequality con-
straints and temporarily giving up the remaining in-
equality constraints.

Nonnegatively constrained minimization refers to
setting D as an identity and l ¼ 0. Given an iteration
point xk and the working set Wk, we first need to
check whether xk minimizes the quadratic functional
ϕðxÞ in the subspace defined by the working set. If
not, we compute a step s by solving an equality-
constrained quadratic programming subproblem in
which the constraints corresponding to the working
set Wk are treated as equalities and all other con-
straints are temporarily ignored. So, given the itera-
tion point xk, the gradient gk, and the working set
Wk∶ ¼ fj ∈ S∶xjk ¼ 0g, the subproblem in terms of
the step sk ¼ x − xk can be expressed as
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minQ½sk� ¼
1
2
ðAsk; skÞ þ ðgk; skÞ;

s:t: sjk ¼ 0; j ∈ Wk:

ð3:2Þ

We denote the solution of Eq. (3.2) by s�k. Note that
the constraints in Wk were satisfied at xk; they are
also satisfied at xk þ αs�k, for any value α. It is clear
that there is a trivial solution s�k ¼ 0. Therefore, we
suppose for the moment that the optimal s�k is non-
zero. We need to decide how far to move along the
direction s�k. The strategy is if xk þ s�k is feasible with
regard to all constraints, we set xkþ1 ¼ xk þ s�k; other-
wise, a line search is made in the direction s�k to find
the best feasible point, i.e., we set xkþ1 ¼ xk þ αks�k,
where αk is the step size satisfies

αk∶ ¼ min
�
1;minj∉Wk;s

j
k
<0

−xjk
sjk

�
: ð3:3Þ

If αk < 1 in Eq. (3.3), then a new working set Wkþ1
is constructed by adding one active constraint. This
constraint is defined by the index, say l, which
achieves the minimum in Eq. (3.3), and this index
is added to the active set Wk. The procedure for add-
ing constraints on Wk is continued until a point x�k is
reached that minimizes the quadratic functional
over its current working set W�

k. The first-order ne-
cessary condition for Eq. (3.10) at W�

k yields

Gs�k þ gk −
X
j∈W�

k

λ�j ¼ 0; ð3:4Þ

s�jk ¼ 0; j ∈ W�
k; ð3:5Þ

λ�j ≥ 0; j ∈ W�
k: ð3:6Þ

Details about implementing the algorithm are de-
scribed in [37–39].

B. RAS for p ¼ q ¼ 2

Referring to our problem, we consider the nonnega-
tively constrained regularizing problem

minJ½f�; s:t: f ≥ 0; ð3:7Þ

where J½f� is given in Eq. (2.1) with p ¼ q ¼ 2, ν > 0
and L a positive (semi-)definite operator. We consider
using regularizing active set method for solving this
problem. It is clear that Eq. (3.7) is equivalent to

minϕ½f�∶ ¼ 1
2 f

TAf − bTf ; s:t: f ≥ 0; ð3:8Þ

where A ¼ KTKþ νLTL, b ¼ KThn þ νLTLf0. This is
clearly a special case of Eq. (3.1), therefore the active
set method can be performed on the regularization
form directly, except that an update of the regulari-
zation parameter ν and the matrix L is required in
each iteration.

So, given the iteration point fk and the working set
Wk∶ ¼ fj ∈ S∶f jk ¼ 0g, the subproblem in terms of
the step sk ¼ f − fk can be expressed as

minϕsk ½sk þ fk� ¼ 1
2 ðAsk; skÞ þ ðgk; skÞ þ c;

s:t: sjk ¼ 0; j ∈ Wk;
ð3:9Þ

with A ¼ KTKþ νLTL, gk ¼ Afk −KThn, and
c ¼ 1

2 ðAfk; fkÞ − ðKfk; hnÞ. Since c is a constant, there-
fore at kth iterative step, we actually solve the equa-
tion

minQ½sk� ¼ 1
2 ðAsk; skÞ þ ðgk; skÞ;

s:t: sjk ¼ 0; j ∈ Wk:
ð3:10Þ

Based on the above preparation, the regularizing
active set algorithm for multichannel image restora-
tion problem is given as follows:

Algorithm 3.1. (A regularizing active set (RAS)
algorithm)

Step 1. Compute a feasible starting point f0; set W0
to be a subset of the active constraints at f0; give the
initial regularization parameter ν0 > 0 and the posi-
tive (semi-)definite matrix D; set k∶ ¼ 0; and com-
pute A ¼ K�Kþ νLTL.

Step 2. Solve (3.10) to find sk; If sk ≠ 0, GOTO Step
3; otherwise, GOTO Step 4.

Step 3. Compute αk from (3.3); set fkþ1 ¼ fk þ αksk;
if αk ¼ 1, GOTO Step 5; otherwise, find l∉Wk such
that f lk þ αkslk ¼ 0 and set Wk∶ ¼ Wk∪flg.

Step 4. Compute the Lagrangian multipliers λjk, set
W�

k ¼ Wk; If λjk ≥ 0 for all j ∈ Wk, STOP, output the
solution f� ¼ fk; Otherwise, set j ¼ argminj∈Wk

λjk;
fkþ1 ¼ fk; set Wk∶ ¼ Wk∖fjg; GOTO Step 5.

Step 5. Set Wkþ1∶ ¼ Wk, k∶ ¼ kþ 1 and update
regularization parameter νk, GOTO Step 2.

Remark 1. In Step 1, the computation of A ¼
K�Kþ νLTL is not necessary if the solution method
of Eq. (3.10) is given by iterative methods, say gra-
dient type methods, since only the matrix–vector
multiplication is performed. In our calculation, we
adopt the feasible CG method for finding the approx-
imate solution of Eq. (3.10), details of which are given
in Appendix A and Algorithm A.1. Note that for mul-
tichannel image deblurring problems, the scale of the
problems is large. Therefore, it is reasonable to con-
sider other stopping criteria. For our problem, the
stopping criterion is based on the value of the rela-
tive decrease of the residual, i.e., the ratio

tol ¼ ∥rk∥2l2 − ∥rkþ1∥
2
l2

∥rkþ1∥
2
l2

ð3:11Þ

is less than ϵ or if a maximum number of iterations
has been performed, where rk is the residual at the
kth iterative step, i.e., rk ¼ Kfk − hn. In our numerical
examples, we choose ϵ ¼ 1:0 × 10−3.
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Remark 2. It is generally agreed that a projected
gradient method, which allows for the active set to
change by many elements per iteration, is more effi-
cient, particularly for large scale problems with a
reasonably large active set at the solutions. However,
for our problems, the nonnegativity constraints are
our “a priori knowledge.” We do not expect too many
zero constrained elements in our model. Actually,
zero values in an image usually mean no reflectance
on the surface, which seldom occurs. Therefore, too
many zero element active constraints are not com-
mon in our problem, and not many constraints will
be active at the solution. This is why our one-time
one-element changing active set techniques
work well.
It deserves attention that for the convex quadratic

programming problem, methods from [42–44] can
also be applied. However, the case p ¼ q ¼ 2 is not
the main concern of our paper.

C. RAS for p; q > 0

We consider the constrained regularizing problem

minJ½f� ; s:t:f ≥ 0; ð3:12Þ

where J½f� is given in Eq. (2.1) with general values of
p, q > 0, ν > 0, and L is specified as a (semi-)positive
operator. It can be the identity, for simplicity.
Recalling that the components ofK, f, and h are kij,

f i, and hi, i ¼ 1; 2; � � � ;M, j ¼ 1; 2; � � � ;N, respectively,
and setting ki1f1 þ ki2f2 þ � � � þ kinfn − hi ¼ ri, i ¼
1; 2; � � � ;M, then a straightforward calculation yields
the gradient and Hessian (the matrix of the second-
order partial derivatives) of J½f� as

gðfÞ ¼ 1
2
pKT

2
6666664

jr1jp−1signðr1Þ
jr2jp−1signðr2Þ

..

.

jrmjp−1signðrmÞ

3
7777775

þ 1
2 νqLT

2
6666664

jf1 − f01jq−1signðf1 − f01Þ
jf2 � f02jq−1signðf2 − f02Þ

..

.

jfn − f0njq−1signðfn − f0nÞ

3
7777775

ð3:13Þ

and

HðfÞ ¼ 1
2
pðp − 1ÞKTdiagðjr1jp−2; jr2jp−2; � � � jrmjp−2ÞK

þ 1
2
νqðq − 1ÞLTdiagðjf1 − f01jq−2;

× jf2 − f02jq−2; � � � ; jfn − f0njq−2ÞL; ð3:14Þ
respectively, where signð·Þ denotes a function that re-
turns −1, 0, orþ1when the numeric expression value
is negative, zero, or positive, respectively; diagð·Þ de-
notes a diagonal matrix whose only nonzero compo-

nents are the main diagonal line. At the kth step,
we define gk ¼ gðfkÞ and Hk ¼ HðfkÞ. Therefore, the
minimization of J½f� can be approximated by solving
a subproblem at the kth step,

minΨ½s�∶ ¼ ðs; gkÞ þ
1
2
ðHks; sÞ; ð3:15Þ

s:t: sþ fk ≥ 0; ð3:16Þ

and the solution of the constrained problem (3.12)
can be obtained iteratively by setting fkþ1∶ ¼ fk þ sk
at the kth iteration, where sk is the solution of Eqs.
(3.15) and (3.16). The solution of the constrained pro-
blem (3.15) and (3.16) can be solved by the Newton
method within the constraint set. This process is
called the feasible Newton-CG iteration. For the nu-
merical procedure, we refer to Algorithm A.1 for
details.

Now, we propose an algorithm for RAS for general
values of p, q > 0 as follows:

Algorithm 3.2. (A regularizing active set algo-
rithm with feasible Newton-CG technique)

Step 1. Choose initial values f0; compute g0 andH0;
set k∶ ¼ 0.

Step 2. Until convergence, iteratively solve Eqs.
(3.15) and (3.16) by RAS with feasible CG iteration
to give sk and compute fkþ1 ¼ fk þ sk.

Step 3. Evaluate gkþ1 and Hkþ1; set k∶ ¼ kþ 1;
GOTO Step 2.

In STEP 2, the stopping criterion is based on the
value of the relative decrease of the residual, i.e., the
ratio

tol ¼
∥rk∥

p
lp
− ∥rkþ1∥

p
lp

∥rkþ1∥
p
lp

ð3:17Þ

is less than ϵ or if a maximum number of iterations
has been performed, where rk is the residual at the
kth iterative step with the same definition as before.
In our numerical examples, we still choose ϵ ¼ 1:0×
10−3. This is, as mentioned before, necessary for large
scale scientific computing problems.

D. A Priori Solution

Employ an a priori trial solution can accelerate the
convergence of an iterative regularizing algorithm
and is quite useful for applications [21,45,46]. It is
well known that the steepest descent gradient meth-
od is simple but slowly convergent as iteration pro-
ceeds. However, the first 1 or 2 iterations are quite
fast, we should employ the information. Therefore,
we use the first 2 iteration points as an a priori solu-
tion f0 and incorporate it into the regularizing model.
The method uses the following iteration formula:
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fkþ1 ¼ fk þ λkdk; ð3:18Þ

where dk ¼ −gk, λk ¼ −gTk dk=dT
k Adk for the quadratic

programming form and λk ¼ argminλJðfk þ λdkÞ by
an inexact line search for the general form, and arg-
min denotes the argument that minimizes the objec-
tive function J. Since the a priori solution is just a
trial step, there is no need to solve for it exactly.
In particular, we can just choose the step size λk as
1, i.e., we use the full length of the negative gradient
step.

E. Choosing the Regularization Parameter and the Scale
Matrix L

To ensure the convexity of the quadratic program-
ming problem (3.8), as in Eqs. (3.10) and (3.2), it is
necessary to choose the appropriate regularization
parameter ν and the scale matrix L [21,26,46,47].
There are several ways to choose the matrix L, how-
ever to ensure fast matrix–vector multiplication, we
simply choose L as the identity, i.e., the weight im-
posed to each element is identical.
Choosing the regularization parameter ν is also an

important issue. It can be chosen by either an a priori
technique or in an a posteriori way. To simplify the
computation, we adopt an a posteriori technique in
a geometric way, i.e., νkþ1 ¼ νkξk−1, where ν0; ξ ∈
ð0; 1Þ and ξ is a proportional factor. It is clear that
νk approaches zero as k tends to infinity. A more ad-
vanced technique for a posteriori choice of the regu-
larization parameter may be used, however complex
computation will weaken the efficiency of the algo-
rithm for large scale problems.

4. Numerical Experiments

For image degradation problems, the reason for caus-
ing blur is various [25,48]. To show the efficiency of
our method, we consider that the point spread func-
tion (PSF) is modeled by Gaussian. Actually, the
Gaussian function simulates the convolution process
of the true signal with the PSF operators well. Both
the blurring due to sensors and that due to aerosols
and turbulence can be taken as Gaussian. The
Gaussian PSF is assumed to be spatially invariant
and in the form

kðx − ξ; y − ηÞ ¼ 1
2πρ�ρ exp

�
−
1
2

�
x − ξ
ρ

�
2
−
1
2

�
y − η
�ρ

�
2
�
;

ð4:1Þ
where ρ and �ρ are positive constants. The larger we
choose ρ and �ρ, the more f gets smoothed. So by the
same argument, the smaller the value of ρ and �ρ we
choose, the more the convolution result resembles f .
And the noise level is denoted by level, i.e.,

n ¼ level
N

∥h∥ × randnðN2; 1Þ;

where N is the size of the image, randnðN2; 1Þ is a
Gaussian normal distributed random vector, and

we set randn (“seed”, 0) in our codes to ensure the
same random vector is generated every time.

The proposed multichannel regularizing active set
method with lp and lq norm restoration algorithm
was tested with a noisy blurred three channel true
color image. The color image is a 256 × 256 remotely
observed image. Two degradation matrices K were
used. The first one introducing only within-channel
blurring and is given by

K ¼

2
6664
K11 0 � � � 0
0 K22 � � � 0
..
. ..

. � � � ..
.

0 0 � � � KNN

3
7775;

where N ¼ 3, each Kii is an M2 ×M2 block Toeplitz
submatrix. The second blurring matrix introduces
both within-channel and between-channel blurring
and is given by

K ¼

2
6664

a11K11 a12K12 � � � a13K1N

a21K21 a22K22 � � � a23K2N

..

. ..
. � � � ..

.

aN1KN1 aN2KN2 � � � aN3KNN

3
7775;

with N ¼ 3. Here, each Kij is again an M2 ×M2 block
Toeplitz submatrix.

The main cost of our algorithm is the matrix–
vector multiplication, so an efficient algorithm to
compute the matrix–vector multiplication should be
investigated. Since the PSF kernel function is spa-
tially invariant, the kernel is separable and can be
reformulated as

kðx − ξ; y − ηÞ ¼ kxðx − ξÞkyðy − ηÞ: ð4:2Þ

Numerically, assume that the discretization of kx
and ky areKx;ij andKy;ij, respectively, then the matrix
Kij is a tensor ofKx;ij andKy;ij, i.e., the Kronecker pro-
duct of Kx;ij and Ky;ij,

Kij ¼ Kx;ij ⊗ Ky;ij: ð4:3Þ

Kx;ij and Ky;ij are all Toeplitz matrices, so Kij is a
block Toeplitz matrix with Toeplitz blocks, i.e., the
N2 ×N2 matrix Kij has the block form

Kij ¼

K0 K−1 � � � K1−N

K1 K0 K−1
..
.

..

. . .
. . .

.
K−1

KN−1 � � � K1 K0

0
BBBB@

1
CCCCA ð4:4Þ

where each block Kj is an N ×N Toeplitz matrix. For
a Toeplitz matrix, it can be determined by its first
row and first column elements. By extending the
block Toeplitz matrix with Toeplitz blocks into a
block circulant with circulant blocks matrix ~Kij, we
can use the two-dimensional discrete Fourier
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transform to compute the matrix vector multiplica-
tion [26].
The block circulant with circulant blocks matrix

can be decomposed as

~Kij ¼ F⋆ΛF ;

where F is the two-dimensional discrete Fourier
transformmatrix andΛ is a diagonal matrix contain-
ing the eigenvalues of ~Kij. And the eigenvalues of ~Kij
can be obtained by computing a two-dimensional dis-
crete Fourier transform of the first column of ~Kij, so
we can compute ~Kijx by F⋆ΛFx. Note that discrete
Fourier transforms can be computed at a low compu-
tational cost by utilizing the fast Fourier transform.
Therefore, the Fourier transform of an m-vector (sig-
nal) can be computed in Oðm × log2mÞ operations.
The precision of the approximation is character-

ized by the root-mean-square error (rmse)

rmse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NM2

XNM2

i¼1

ððKf �Þi − hiÞ2
ððKf �ÞiÞ2

vuut ;

which describes the average relative deviation of the
retrieved signals from the true signals.

A. Experiments for the Form of Quadratic Programming

First, we set p ¼ q ¼ 2. This leads to the classical
regularization, which corresponds to a quadratic
programming problem (3.7) with nonnegativity
constraints.
In our numerical experiments, the Gaussian PSF

is the integral kernel k, so K can be represented by a
Kronecker product of two low order matrices as K ¼
A ⊗ BwithA ∈ Rm×m,B ∈ Rn×n. For the blurring pro-
cess, A and B are taken to be sparse-banded matrices
[25], meaning only pixels within a distance band −1
contribute to the blurring.
Experiment 1. We suppose the half-bands of R, G,

and B channels are 5, 4, and 4, respectively, and the
values of ρ ¼ �ρ of R, G, and B channels are 0.6, 0.7,
and 0.6, respectively. The blurring matrix is given by

2
64
a11K11 a12K12 a13K13

a21K21 a22K22 a23K22

a31K31 a32K33 a33K33

3
75: ð4:5Þ

The coefficients aij are chosen as a11 ¼ 1, a12 ¼ 0,
a13 ¼ 0, a21 ¼ 0, a22 ¼ 1, a23 ¼ 0 and a31 ¼ 0, a32 ¼ 0,
a33 ¼ 1. The input original three channel image,
blurred image, and restoration are illustrated in
Figs. 1–3, respectively.
Experiment 2. We suppose the half-bands of R, G,

and B channels are 5, 4, and 4, respectively, and the
values of ρ ¼ �ρ of R, G, and B channels are 0.6, 0.7,
and 0.6, respectively. The blurring matrix is given by
Eq. (4.5), but the coefficients aij are chosen as
a11 ¼ 0:8, a12 ¼ 0:1, a13 ¼ 0:1, a21 ¼ 0:1, a22 ¼ 0:8,
a23 ¼ 0:1 and a31 ¼ 0:1, a32 ¼ 0:1, a33 ¼ 0:8. The

blurred three channel image and restoration are illu-
strated in Figs. 4 and 5.

The within- and between-channel restoration re-
sults indicate that their blurring effects are different.
And it is more difficult to recover the actual input
from between-channel blurs. To characterize the de-
gree of approximation and the cost of computation,
we list in Table 1 the rmses and the CPU time. The
CPU time consumption and small rmses in within-
channel indicate that the method is applicable for
within-channel deblurring. But it is not applicable
for between-channel deblurring since the values of
rmses are greater than 0.1 in some channels.

B. Experiments for p;q ∈ ½1;2�
For general values of p and q, the object functional
JðfÞ of problem (2.1) may be nonsmooth. In this case,
the model corresponds to the nonsmooth regulariza-
tion and optimization model.

Experiment 1. We consider the case p ¼ 2 and q ¼
1 in this experiment. We suppose the half-bands of
the R, G, and B channels are 5, 4, and 4, respectively,
and the values of ρ ¼ �ρ of the R, G, and B channels
are 0.6, 0.7, and 0.6, respectively. The form of blur-
ring matrix is given by Eq. (4.5). The coefficients
aij are chosen as a11 ¼ 1, a12 ¼ 0, a13 ¼ 0, a21 ¼ 0,
and a31 ¼ 0, a32 ¼ 0, a33 ¼ 1. The recovered image
is illustrated in Fig. 6.

Experiment 2. We consider the case p ¼ 2 and q ¼
1 in this experiment. Again we suppose the half-
bands of the R, G, and B channels are 5, 4 and 4 re-
spectively, and the values of ρ ¼ �ρ of the R, G, and B
channels are 0.6, 0.7, and 0.6, respectively. The blur-
ring matrix is given by Eq. (4.5). The coefficients aij
are chosen as a11 ¼ 0:8, a12 ¼ 0:1, a13 ¼ 0:1, a21 ¼
0:1, a22 ¼ 0:8, a23 ¼ 0:1 and a31 ¼ 0:1, a32 ¼ 0:1,

Fig. 1. (Color online) Original input three channel image.
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a33 ¼ 0:8. The recovered image is illustrated
in Fig. 7.
Experiment 3. We consider the case p ¼ 1:5 and q ¼

1 in this experiment. Again we suppose the half-
bands of the R, G, and B channels are 5, 4, and 4,
respectively, and the values of ρ ¼ �ρ of the R, G,
and B channels are 0.6, 0.7, and 0.6, respectively.
The blurring matrix is given by Eq.(4.5). The coeffi-
cients aij are chosen as a11 ¼ 1, a12 ¼ 0, a13 ¼ 0,
a21 ¼ 0, a22 ¼ 1, a23 ¼ 0 and a31 ¼ 0, a32 ¼ 0,
a33 ¼ 1. The recovered image is illustrated in Fig. 8.

Experiment 4. We consider the case p ¼ 1:5 and q ¼
1 in this experiment. Again we suppose the half-
bands of the R, G, and B channels are 5, 4, and 4,
respectively, and the values of ρ ¼ �ρ of the R, G,
and B channels are 0.6, 0.7, and 0.6, respectively.
The blurring matrix is given by Eq. (4.5). The coeffi-
cients aij are chosen as a11 ¼ 0:8, a12 ¼ 0:1, a13 ¼ 0:1,
a21 ¼ 0:1, a22 ¼ 0:8, a23 ¼ 0:1 and a31 ¼ 0:1, a32 ¼
0:1, a33 ¼ 0:8. The recovered image is illustrated
in Fig. 9.

Experiment 5. We consider the case p ¼ 1:6 and
q ¼ 1:1 in this experiment. Again we suppose the

Fig. 3. (Color online) Within-channel restoration: the restored
image for ν ¼ 0:005 and noise level ¼ 0:01.

Fig. 4. (Color online) Blurred noisy image with noise level equal-
ing 0.01.

Fig. 5. (Color online) Between-channel restoration: the restored
image for ν ¼ 0:005 and noise level ¼ 0:01.

Fig. 2. (Color online) Blurred noisy image with noise level
equaling 0.01.
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half-bands of the R, G, and B channels are 5, 4, and 4,
respectively, and the values of ρ ¼ �ρ of R, G, and B
channels are 0.6, 0.7, and 0.6, respectively. The blur-
ring matrix is given by Eq. (4.5). The coefficients aij
are chosen as a11 ¼ 0:8, a12 ¼ 0, a13 ¼ 0, and a31 ¼ 0,
a32 ¼ 0, v. The recovered image is illustrated in
Fig. 10.
Experiment 6. We consider the case p ¼ 1:6 and q ¼

1:1 in this experiment. Again we suppose the half-
bands of the R, G, and B channels are 5, 4, and 4,
respectively, and the values of ρ ¼ �ρ of the R, G,
and B channels are 0.6, 0.7, and 0.6, respectively.
The blurring matrix is given by Eq. (4.5). The coeffi-
cients aij are chosen as a11 ¼ 0:8, a12 ¼ 0:1, a13 ¼ 0:1,
a21 ¼ 0:1, a22 ¼ 0:8, a23 ¼ 0:1 and a31 ¼ 0:1, a32 ¼
0:1, a33 ¼ 0:8. The recovered image is illustrated
in Fig. 11.
As mentioned before, the blurring effects for with-

in- and between-channel are different. But with the
nonquadratic lp − lq model and using the regulariz-
ing active set method, stable recoveries are obtained.
Again, to characterize the degree of approximation
and the cost of computation, we list in Table 2 the
rmses and the CPU time. The values of rmses reveal
that the nonquadratic lp − lq model is more suitable

for recovering ill-posed nonregular multichannel
images.

C. Discussion

Large values of p and q for RAS can be also imple-
mented easily with the description of our algorithm.
However we find that results are not so satisfactory.
For example, for p ¼ 2 and q ¼ 4, as is used in
[10,11], the restorations cannot be accepted. We
think the techniques for choosing proper weight

Fig. 7. (Color online) Between-channel restoration: the restored
image for ν ¼ 0:005 and noise level ¼ 0:01 in the case p ¼ 2 and
q ¼ 1.

Fig. 8. (Color online) Within-channel restoration: the restored
image for ν ¼ 0:005 and noise level ¼ 0:01 in the case p ¼ 1:5
and q ¼ 1.

Table 1. RMSEs and Variance Differences for R, G, and B
Channels and CPU Time (seconds) of Our Regularizing Algorithm

for the Quadratic Inversion Model

Within-Channel Between-Channel

CPU 323.4219 72.3281
RMSE (R) 0.0133 0.1356
RMSE (G) 0.0196 0.7195
RMSE (B) 0.0170 0.0513

Fig. 6. (Color online) Within-channel restoration: the restored
image for ν ¼ 0:005 and noise level ¼ 0:01 in the case p ¼ 2 and
q ¼ 1.
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factors for the residual part and the regularized part
developed in [10,11] should be employed. However
this is beyond the scope of this paper.
The pivot point for the success of the RAS is that

it incorporates solving nonnegatively constrained
minimization problem naturally, and this is particu-
larly useful for physical problems, say aerosol parti-
cle distribution and tomography [40,46].
The numerical results indicate that the active set

method for lp − lq regularizing model with 1 ≤ p, q ≤ 2

performs better than the active set method for the
quadratic model. The use of p ¼ q ¼ 2 is best suited
for problems with a smooth solution and normally
distributed noise in observation. However, irregular
observation data blurred and contaminated by tur-
bulence or aerosols lose their smooth property. As
is often the case, there are many different types of
outliers. This explains why the general lp − lq regu-
larizing model gets smaller rmse values than that
from quadratic model.

5. Concluding Remarks

This research focused on the development of regular-
izing active set methods for simulating the nonnega-
tively constrained multichannel image restoration

Fig. 10. (Color online) Within-channel restoration: the restored
image for ν ¼ 0:005 and noise level ¼ 0:01 in the case p ¼ 1:6
and q ¼ 1:1.

Fig. 11. (Color online) Between-channel restoration: the restored
image for ν ¼ 0:005 and noise level ¼ 0:01 in the case p ¼ 1:6 and
q ¼ 1:1.

Fig. 9. (Color online) Between-channel restoration: the restored
image for ν ¼ 0:005 and noise level level ¼ 0:01 in the case p ¼ 1:5
and q ¼ 1.

Table 2. RMSEs for R, G, and B Channels and CPU Time
(seconds) of Our Regularizing Algorithm for the General Ip − Iq

Inversion Model

Within-Channel Between-Channel

p ¼ 2, q ¼ 1:0
CPU 342.2500 469.8750
RMSE (R) 0.0133 0.0143
RMSE (G) 0.0196 0.0249
RMSE (B) 0.0170 0.0112

p ¼ 1:5, q ¼ 1:0
CPU 283.9375 272.1719
RMSE (R) 0.0146 0.0255
RMSE (G) 0.0153 0.0236
RMSE (B) 0.0164 0.0262

p ¼ 1:6, q ¼ 1:1
CPU 1120.0781 223.5625
RMSE (R) 0.0089 0.0253
RMSE (G) 0.0124 0.0262
RMSE (B) 0.0113 0.0262
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problems. The scope of this research is to develop a
general lp − lq regularizing model and its quadratic
approximation, which could characterize regulariz-
ing properties in different purpose of numerical
inversion.
In optimization research fields, for a general lp and

lq combined optimization problem, it is convenient to
solve it by quasi-Newton methods instead of the
exact Newton method. For example, the DFP meth-
od, BFGS, L-BFGS, and trust region method
[32,37,39,49]. However, for image degradation pro-
blems, these methods may lose the structure of the
original discrete matrix operator, hence fast matrix–
vector multiplication is lost. Therefore, how to use
thesemethods while keeping the structure of the ker-
nel matrix is still an interesting topic. In addition, for
p ¼ 2 and q → 1 or p ¼ 2 and q → 0, the minimiza-
tion problem corresponding to finding sparse
solutions (due to a band-limited system), linear pro-
gramming methods may be applied. Therefore our
model is also useful for problems of recovering sparse
model parameters in geophysics [19,20] and for com-
pressive sampling and decoding of signals [50].

Appendix A: Feasible CG Method

We consider the minimization problem

minJ½f� ; s:t: f ≥ 0; ðA:1Þ
where J½f� is a nonlinear functional, given in
Eq. (3.12). At the kth iteration, the search direction
sk is computed from

minΨ½sk� ; s:t:~sjk ¼ 0; j ∈ Wk; ðA:2Þ

where ~sjk∶ ¼ sjk þ fk. Ψ½sk� is a nonlinear function, gi-
ven in Eq. (3.15). Then fkþ1 ¼ fk þ αksk. The gradient
of Ψ½sk� is denoted by gradk½Ψ� ¼ Hksk þ gk.
Initialization for choosing W0: The initial working

set W0 is related to the initial point ~s0. Since the con-
straint is nonnegative, the components of W0 can be
chosen as i if the ith component of ~s0 equals zero, and
zero, otherwise. This means that the ith constraint of
W0 is active. The index i is from 1 to N.
Solving the quadratic problem (3.15): Since we are

interested in finding the feasible direction sk, it is un-
necessary to solve Eq. (3.15) accurately. We apply a
feasible direction of descent method with a CG solu-
tion. First, we address the basic concept and proce-
dures of feasible direction of descent methods.
The fundamental concept of feasible direction

methods is that of the feasible direction of descent.
Denote by S ¼ ff∶f ≥ 0g. If f ∈ S, then s ≠ 0 is called
a feasible direction of descent for f if there exists
αupper such that for all α ∈ ð0; αupperÞ the following
two properties hold: (1) f þ αs ∈ S; (2) J½f þ αs� <
J½f�. Note that condition (2) is equivalent to requiring
that grad½J�Ts < 0.
The basic steps in feasible direction methods in-

volve solving a nonlinear programming subproblem

to find the direction vector and then finding the step
size along this direction by performing a constrained
one-dimensional line search. After updating the
current point, the above steps are repeated until
the termination criterion is satisfied.

Based on above comments, the feasible direction of
Eq. (3.15) is the vector in null space. There are sev-
eral ways for solving the nonlinear programming
subproblem, such as the steepest descent method,
CG method, and Newton and quasi-Newton methods
[39]. Due to the fact that the model is quadratic, we
apply the CG method, which is fast and efficient. To
describe the algorithm, we use the following nota-
tions: G∶ ¼ Hk and g∶ ¼ gk.

Algorithm A.1. (Feasible CG algorithm)

Step 1. Input s0 (such that n0 ∈ S); compute
grad0½Ψ�∶ ¼ Gs0 þ g and such that grad0½Ψ� is a fea-
sible direction; set k∶ ¼ 1.

Step 2. If the stopping criterion is satisfied, output
s� ¼ sk−1, STOP; otherwise, set zk−1∶ ¼ −gradk−1½Ψ�,
ρk−1∶ ¼ zTk−1zk−1.

Step 3. Compute next iteration points:
αk∶ ¼ ρk−1=ðsTk−1ðGsk−1ÞÞ,
sk∶ ¼ sk−1 þ αkzk−1,
gradk½Ψ�∶ ¼ gradk−1½Ψ�þ

αkGskðsuch that gradk½Ψ�is a feasible directionÞ,
ρk∶ ¼ gradk½Ψ�Tgradk½Ψ�,
βk∶ ¼ ρk=ρk−1,
zk∶ ¼ −gradk−1½Ψ� þ βkzk−1.
Step 4. If k exceeds the maximum iterative steps,

output s� ¼ sk STOP; otherwise, set k ¼ kþ 1, GOTO
Step 2.

In our calculation, we choose the initial values of
s0as a vector with components all equaling 0.5. We
want to mention that for ill-posed problems the stop-
ping criterion must be carefully chosen. Here we
choose the stopping criterion in Step 2 as follows:
we define

‖gradk½Ψ�‖ ≤ ϱ‖grad0½Ψ�‖2; ðA:3Þ

where ϱ is a preassigned tolerance or dominant para-
meter and gradk½Ψ� is defined as

ðgradk½Ψ�Þi
� ðgradk½Ψ�Þi ifðskÞi > 0
minfðgradk½Ψ�Þi; 0g ifðskÞi > 0

:

The role of ϱ is controlling further iteration at pre-
assigned precision. The choice of ϱ is dependent on
the degree of ill-posedness of problems. Less value
of ϱ yields better approximation but induces more
iterative steps and results in more CPU time; larger
value of ϱ require fewer iterative steps and less CPU
time but yield insufficient approximation. In our nu-
merical examples, we choose ϱ ¼ 2:0 × 10−3. Empiri-
cally, we recommend choosing ϱ between 1:0 × 10−4

and 1:0 × 10−2.
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